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SUMMARY:
Wind-induced vibrations commonly are the leading design criterion for long-span bridges. This article presents a
comparative study between a recently developed quasi-3D turbulent Computational Fluid Dynamics (CFD) scheme
based on the Vortex Particle Method (VPM) and various semi-analytical models based on a flat-plate aerodynamics.
The models are compared under turbulent wind for various wind speeds for a 2D case including a flutter analysis. A
quasi-3D turbulent analysis is also conducted. The aerodynamic coefficients are identified from a CFD analysis and
compared against experimental results along with qualitative and quantitative assessment of the turbulence field.The
Great Belt East Bridge was chosen as a reference object.
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1. INTRODUCTION
The leading load-case scenario for the design of long-span bridges are the wind-induced vibra-
tions. High Reynolds number, irregular shape with regions of massive flow separation and large
time-scales are only few of the many reasons why the modeling of the Fluid-Structure Interaction
(FSI) for this type of bluff bodies has been an ongoing research topic in the last few decades. Gen-
erally, the FSI is simulated using three models: experimental, numerical and semi-analytical. The
experimental aeroelastic testing still represents the benchmark for design; however, the time con-
suming and expensive procedure is a disadvantage. The semi-analytical approach of modeling of
the aerodynamic forces offers fast and robust prediction of the response. In this case, experimen-
tal aerodynamic coefficients are necessary for the semi-analytical models to describe the complex
aerodynamic behaviour. With the ascent of the computer technology, the numerical models based
on CFD have attracted considerable attention. Here, the Navier-Stokes (N-S) equations describing
the fluid domain are discretized resulting in an independent numerical procedure from wind tunnel
tests. Nevertheless, the numerical uncertainty is a primary set-back and thus, there is a great deal
of scepticism towards their practical implementation.
This paper presents a comparison of the response of a suspension bridge subjected to turbulent
wind between semi-analytical models and a recently developed quasi-3D turbulent scheme based
on the VPM. The goal is to qualitatively and quantitatively verify the CFD scheme for buffeting
analysis by the semi-analytical models from an aspect of their implied assumptions. The aerody-
namic coefficients and the flutter limit are identified by CFD and verified with wind tunnel results.
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2. AERODYNAMIC MODELS
2.1. Semi-Analytical Models
The semi-analytical models are commonly based on analytical expressions from flat-plate aerody-
namics and aerodynamic coefficients to account for the bluffness of the bridge deck. The quasi-
steady and linear unsteady assumptions are the two main pivotal points around which the semi-
analytical models are developed. The first assumption neglects the fluid memory, while the latter
ignores the aerodynamic nonlinearity. The following aerodynamic models were used within this
study: the Quasi-Steady (QS), the Linearized Quasi-Steady (LQS), the Corrected Quasi-Steady
(CQS) (Diana et al., 1993), the Linearized Unsteady (LU) (Chen and Kareem, 2002) with its sim-
plification for the Mode By Mode (MBM) approach, the Modified Quasi-Steady (MQS)(Øiseth
et al., 2010) and the Hybrid Nonlinear (HNL) model (Wu and Kareem, 2013). Fig. 1 depicts the
forces acting on a bridge deck under the the mean wind speed U with a horizontal u(t) and a verti-
cal w(t) turbulent component (buffeting forces) including motion-induced forces due to lateral p,
vertical h and torsional motion α . This includes the drag FD, lift FL and the moment FM forces.
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Figure 1. Aerodynamic forces acting on a bridge deck.

The QS model takes into account the aerodynamic nonlinearity; however it fails to describe the
fluid-memory effect. It does not present an implementation overhead and the uncertainty that arises
with its input parameters is low, except the mi, i ∈ {h,α} coefficient defining the aerodynamic
centrer. The lift force FL, resultant velocity Vres and effective angle of attack αe,i are described as:

FL =−1
2

ρV 2
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√
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)
,
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where, ρ is the air density, CL(αe) is the lift nonlinear coefficient, αs is the angle of rotation due to
mean wind forces and B is the chord. In case of the LQS model, the above equation is linearized
with respect to the αs yielding in linear relation between the lift slope C

′
L|αs and αe. The CQS model

integrates the CL(αe) over the effective angle by introducing a correction coefficient K∗L multiplying
the lift slope C

′
L(αe). With this, the fluid memory is taken into account up to a certain degree.

The lift force for the LU model is a linear function of the fluctuating wind components and the
displacements with its time derivatives, which are modified by frequency dependent coefficients:
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The flutter derivatives Hi are dependent on the reduced frequency of oscillation K = ωB/U and
account for the fluid memory, while the rise-time of the buffeting forces is addressed by the aero-
dynamic admittance functions χ . The preceding equation includes terms from the frequency and
the time domain; thus, a rational approximation is required for a pure time-domain solution. In
this case the impulse functions Ii were utilized, which are identified from the unsteady information
contained in the flutter derivatives and the aerodynamic admittance (Chen and Kareem, 2002):
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The rational approximation can be a cumbersome in some cases for very bluff bodies and scattered
aerodynamic derivatives. In order to alleviate this, the MQS interpolates the flutter derivatives
at a chosen frequency, resulting in same formulation as LU without the lag terms in the rational
approximation. For the simple MBM approach, the aerodynamic coupling is completely neglected.
The most advanced model within this study is the NHL model which splits the response and wind
spectrum on low and high frequency components. The QS model is utilized for the lower part
since the aerodynamic nonlinearity is governing, while the LU model for the high frequencies
as the fluid memory plays significant role. Recently nonlinear aerodynamic models have been
developed based on Reduced Order Modeling (ROM) and approximation of the hysteresis of the
dynamic wind coefficients (Wu and Kareem, 2013); however, these are beyond the scope of this
study.

2.2. Vortex-Particle Method
For the solution of the N-S equations, a multitude of numerical methods exist. The choice of the
suitable method is crucial for an accurate modeling of the underlying physics, while efficiently us-
ing the computational resources. The VPM uses a grid free formulation for simulating incompress-
ible fluid flow. This mesh-less numerical technique provides an alternative to classical mesh based
Eulerian methods. The VPM models vorticial flows by solving the vorticity transport equation
in Lagrangian flow. These are typical flows around bluff bodies i.e. moderate to high Reynolds
number. The formulation and the discretization reflect the natural representation in dominantly
vortcial flow, which is inherent in flows around bluff bodies. Vortex sheets are modeled as par-
ticles with invariant strength which are transported downstream by convection and diffusion due
to the induced velocity field. For inviscid flow and R2 from the Euler equations described by the
vorticity ω eq. (4a) the velocities uuu(xxxppp) of arbitrary "fluid markers" described by their position
xxxppp can be obtained by using the Biot-Savart equation (4b) (Morgenthal and Walther, 2007). In a
domain discretized by particles, uuu(xxxppp) yields into superposition of the contributions from all of the
particles depending on their position and strength Γp:

Dω

Dt
= 0, uuu(xxxppp) =UUU− 1

2π

∫
D

ωωω0(xxx0)× (xxx0− xxx)
|xxx0− xxxppp|2

dD0, uuu(xxxppp) =UUU−
Np

∑
p=1

Kσ (xxxp− xxx)Γp.

(4a,4b,4c)
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Figure 2. A snapshot of normalized instantaneous velocity field in parallel 2D slices including a schematic for
particles’ inflow position.

Singularities arise when two particles approach each other and thus a mollified velocity kernel
is required Kσ to avoid numerical instabilities. The boundary element method was used for the
FSI, discretizing the surface into panels, at which the surface pressure is computed integrating the
pressure gradient. The diffusion was solved separately as a fractional step using the Random Walk
Method. The method also accounts for free-space boundary conditions, leading to a robust scheme
for flows around structures such as towers and bridges (Morgenthal, Corriols, et al., 2014).
One of the key point of this study is the modeling and simulation of atmospheric turbulence in
VPM. Although turbulence is three dimensional by its nature, the idea is to obtain valid turbulence
characteristics in a 2D slice neglecting the tilting and stretching of vortices. In some previous
studies (Rasmussen et al., 2010) the velocities were sampled on a 2D ladder, from which the
particles’ strength was computed and the particles were injected into the domain. Although time
correlation was preserved, the span-wise correlation between slices for a multi-slice simulation
(Fig. 2) could not be accounted for. Therefore, in a recently developed method by the authors this
was achieved by simulating and injecting particles directly instead of velocities in the domain. In
order to obtain the inflow condition, a relation is required between the standard deviation of the
velocity σU and particle’s strength σΓ. Relating σU and Γi

P for a single point:
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represents the expansion of the summation of the particles’ influences on the velocity for a stabi-
lized domain with homogeneously spaced particles at distance r j = j∆r where Taylor’s hypothesis
applies and N j is the corresponding number of particles at the before mentioned distance. For large
amount of particles Nl uncorrelated in-plane, the ∑

Nl
p=1 Γp could be linearly related to the summa-

tion of the total number of particles influencing the point of interest Np (eq. (6a)). For equidistantly



spaced particles, eq. (6b) could be obtained which then can be related to eq. (5b) as:
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The first summation in the right hand side of eq. (6c) converges to n/(2π∆r) for a Gaussian core.
Employing eq. (6c) into eq. (5a) and expanding the finite summation over the squared term and
neglecting the higher order term as cross-correlation eq. (7a) the standard deviation of the velocity
fluctuation σu can be related to σΓ as (eq. (7b)):
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After some basic manipulations, the σΓ can be related to the turbulence intensity Iu (eq. (7c)).
As a result, the standard deviation of the particles’ strength could be simulated as a random corre-
lated process and thus correlated particles along the bridge axis for each slice could be obtained.
An obvious shortcoming to this method is that once the particles are into the domain, there is no
interaction between them from different slices. Furthermore for FSI of a line-like structure, the
correlation of the buffeting forces can not be taken into account as they can not be separated from
the self-excited forces in the fully coupled CFD. However, the concept of the joint acceptance for
high wind speed and coupled effects is a further topic of research.

3. APPLICATION
3.1. Reference Object
The Great-Belt East bridge is used as a reference object (Fig. 3) with a 31 m wide cross section
(Fig. 1). In the analysis, 22 mode-shapes were included with frequencies ranging from 0.05Hz
up to 0.5Hz. The frequencies and wind tunnel data were validated against (Larsen, 1992). Modal
damping of 0.5% modal damping was used with m = 22.7 t/m and Iα = 2240 tm2.

Figure 3. Reference object - Great Belt East Bridge.

3.2. 2D Sectional Analysis
3.2.1. Static wind coefficients and flutter derivatives
On Figure 4 (left) the domain of the CFD simulations is depicted. The simulations were conducted
for Re=105 for the static wind coefficients and flutter derivatives and up to Re=108 for the buffeting
analysis. The static wind coefficients and flutter derivatives were obtained for laminar flow. The CL



and CM are almost in perfect alignment with the experiments, as shown on Figure 4 (right). Some
discrepancies are noted in the CD. Possible reasons for the discrepancies could be the modeling of
railings and inflow turbulence in the experiments. In this study CD could be further improved, as
the friction drag was neglected during the determination procedure. The flutter derivatives seem
to be in good agreement with the experiments, as shown on Figure 5. The flutter derivatives were
obtained also for different angle of attack (Fig. 9).
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Figure 4. Simulation domain (left) and comparison of static wind coefficients with experimental data (right).
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Figure 5. Comparison of the flutter derivatives with experimental data for α=0 deg.

3.2.2. Flow field validation
In case of turbulent flow, the distance between the particle injection and tip of the cross section
should be longer than laminar flow. The best way to be determined is to perform a parametric
study of the properties of the turbulent field such as the Power Spectral Density (PSD) and the
turbulence intensity. Similar one was conducted by Rasmussen et al., 2010. As a target spectrum,
the von Karman was chosen with 6% turbulence. Figure 6 (right) depicts snapshot of a turbulent
flow, where the inflow particles are visible. On Figure 6 normalized mean wind speed and is
depicted w.r.t a portion of the domain, representing free stream velocity accurately. On Figure 7
the normalized turbulence intensities measured at the windward tip of the section (placed at x=0,
y=0) are depicted. The measured Iu was higher for 10%, while for Iw the difference was 8%.
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Figure 6. Snapshot of turbulent flow field (left). Normalized mean wind speed w.r.t. U=40 m/s for a portion of the
domain for Uu (right).
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Figure 7. Normalized turbulence intensity w.r.t. Iu=6% for a portion of the domain for Iu (left) and Iw (right).
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Figure 8. PSD of the longitudinal S(u) (left) and vertical S(w) (right) component w.r.t. von Karman for Iu=Iw=6%.

On Figure 8 the comparison between the target PSD and measured one is depicted. The longi-
tudinal spectra (left) coincides slightly better than the vertical one (right) w.r.t. target PSD. The
distinctive artificial peak and increase in the energy near 10 Hz is due to the chosen seeding fre-
quency ∆p=10. For now the variation of ±10% in the I and discrepancy in the PSD are acceptable;
however, further parametric studies w.r.t. numerical parameters such as section position, grid di-
mensions and particle seeding frequency would lead to higher quality of the turbulent flow field.



3.2.3. Aerodynamic analysis
Flutter and buffeting analysis were conducted for a single slice with 1 m reference length. The
flutter limit for laminar flow for CFD and various semi-analytical models are shown in Figure 9
(right). Most of the models coincide good with Wind Tunnel (WT) and CFD results, except for the
MBM model for which flutter limit could not be determined, since it is a coupled flutter. The LQS
and MQS flutter limits were obtained with aerodynamic centre obtained from the flutter derivatives
at Vr = 20 for the heaving and pitching motion. On the same figure the critical flutter velocities
are obtained for the commonly used aerodynamic centre of mα=-0.25 which corresponded to the
lower values. It should be noted that the fluid memory is crucial in many cases and LQS and QS
do not predict the flutter limit accurately, and should be used with precaution (Chen and Kareem,
2002). Figure 13 depicts the Root Mean Square (RMS) of the vertical (left) and rotational (right)
displacement. It should be noted that buffeting analysis, unlike other aeroelastic results, needs
to be interpreted and corrected for non-similarities.These non-similarities arise influence of mode
shapes, displacement and the torsional damping.
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The RMS of the vertical displacements are quite comparable. The QS amplitudes are the highest
with negligible difference with the CQC. The LU model experiences somewhat higher amplitudes
than the NLU. The CFD analysis is somewhere in-between LU and LUA, which takes into account
the Sears’ admittance. This is somehow realistic as the streamed-lined sections behaviour is close
to a flat-plate and overshooting is not expected. In the high velocity range, the situation changes
due to the influence of the aerodynamic coupling, as the rotational displacements are significantly
large. Although some of the advanced models (NLUA) are comparable with the CFD analysis some
of the results such as the high amplitudes of the LU model needs to be further revised. However, it
is possible that this is due to the high rotational displacements for which, the LU might not replicate
the torsional damping due to the amplitude. Another reason for higher rotational displacements of
the LU over the QS and LQS could be the overshooting. This is less likely for a streamed-lined
section. Figure 11 depicts comparable time histories of the vertical displacement.

3.3. Quasi-3D Analysis
The whole point of quasi-3D CFD analysis is to be able to perform a buffeting analysis, at reason-
able computational cost, without obtaining the aerodynamic coefficients. For this, here a multi-
slice simulation is conducted with 9 slices applying wind only on deck. The slices locations and
results for U=60 m/s are depicted on Figure 12 for the vertical (left) and torsional (right) displace-
ments. The vertical displacements correspond well with the CFD. Due to the high reduced velocity
the effect of aerodynamic admittance is negligible for the LU model for the vertical displacement.
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The effect of aerodynamic coupling is obvious by considering the MBM model. The reason for the
discrepancies between the CFD and the rest of the models for the vertical displacement could that
the slices’ location and particularly the number of slices is not optimal and should be studied in
depth, as well as the quality of the flow characteristics. The comparison among the semi-analytical
models is quite logical, as mostly the QS and LQS exhibit higher displacements than the LU
and NLU. The aerodynamic admittance decreases the torsional response significantly in this case
and the reduction factor from the CQS is more evident for the rotational displacements. Similar
observations are done by Wu and Kareem, 2013.

Figure 13. An instantaneous particle stream of the quasi-3D buffeting analysis.

4. CONCLUSION
In this study, a comparative analysis was conducted based on numerical and semi-analytical mod-
els for aerodynamic analysis of long-span bridges. The semi-analytical models present a robust
and reliable estimate of the response; however, they are highly dependent on the aerodynamic co-
efficients and as the complexity of the model increases, numerical uncertainties arise. The recently
developed scheme for quasi-3D buffeting analysis based on the VPM resulted in comparable results
with the semi-analytical models. The advantage is that few parameters are required to describe the
response over the whole wind range and its highly computational efficient. However, there is a
great deal of numerical uncertainty and further validation and best-practice studies are required.
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