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Abstract 

Long-span bridges are sensitive to wind-induced forces. In this paper, we evaluate the influence of 
the assumptions in the semi-analytical aerodynamic models on the dynamic response of a bridge 
deck using comparison metrics. These metrics are constructed in such way to evaluate the 
differences in the signal properties of the time-dependent response. The signal properties include 
the time-varying frequency and magnitude content, phase and stationarity. The behavior of the 
metrics is first studied on illustrative examples. Finally, the metrics are used to quantify the 
discrepancies in the response of a streamlined deck, obtained by utilizing a numerical and two 
semi-analytical models. The results of the study provide deeper insight into bridge aerodynamics. 

Keywords: long-span bridges; bridge aerodynamics; aeroelasticity; CFD; comparison metrics. 

 

1 Introduction 

With increasing spans of cable-supported bridges, 
the wind-induced vibrations become the most 
prominent action on such structures. A multitude 
of semi-analytical aerodynamic models are 
available to describe wind loads acting on a bridge 
deck [1]. In the past few decades, numerical 
models based on Computational Fluid Dynamics 
(CFD) have also emerged as an instrument for 
analysing the wind-structure interaction. Each 
semi-analytical model for the aerodynamic forces 
is based on a set of assumptions such as 
aerodynamic linearity and quasi-steadiness; 
therefore, these models cannot account for all the 
phenomena simultaneously for the whole range of 
reduced velocities. The need to quantify the 
influence of the assumptions implied within the 
aerodynamic models on the deck response 

becomes apparent for slender bridges, in order to 
make an accurate prediction of the wind loading. 
Commonly, the comparison of the semi-analytical 
aerodynamic models in the time-domain is 
performed by subjecting the structural system to 
an identical wind fluctuating velocities and 
monitoring the displacements. There has been 
several studies (cf. e.g. [1,2]), which compare the 
semi-analytical models by taking the root-mean-
square (RMS) of the displacements as a quantity 
of interest. However, the RMS is an averaged 
quantity, which is not the best indicator of the 
nonlinear and non-stationary features of a signal.  

Therefore, in this study, we apply comparison 
metrics for assessment of particular features of 
two response time histories. These features 
include the relative differences in phase, peak, 
RMS, time- and frequency-dependent magnitude, 
stationarity and nonlinear features. Based on the 
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results of the comparison metrics, a multicriteria 
assessment of the effect of assumptions implied in 
the aerodynamic models is performed. A 
comparison of two time histories has been 
commonly performed utilizing the validation 
metrics in vehicle safety applications [3]. Some of 
the metrics used herein are adapted from the 
validation metrics. In fact, the validation metrics 
are comparison metrics, in which the reference 
model is experimental one.  

The article is organized as follows: In Sec. 2 we 
introduce the mathematical construction of the 
comparison metrics. The metrics are applied on 
basic examples to study their performance in Sec. 
3. Section 4 presents the results of the metrics for 
the response of a bridge deck. Finally, we make 
concluding remarks in Sec. 5. 

2 Comparison Metrics 

Considering two signals 𝑥 = 𝑥(𝑡) and 𝑦 = 𝑦(𝑡) 

dependent on time 𝑡 and with equal length 𝑇, we 
denote a comparison metric as 𝑀 = 𝑀(𝑥, 𝑦), 

where 𝑥 is a reference signal. The metrics are 
constructed in such way that their values are 
between 0 and 1, the latter identifying that there 
are no discrepancies in the signal property of 
interest.  To facilitate this, we construct the 
metrics using an exponential function with 
negative exponent as: 

𝑀(𝑥, 𝑦) = exp(−𝜆|𝐴(𝑥, 𝑦)|),      (1) 

where 𝜆 is the metric parameter and 𝐴(𝑥, 𝑦) is a 
relative exponent which is constructed in such 
manner to account a particular property of the 
signals. The metric parameter is introduced to 
adjust the sensitivity of the metrics. For simplicity, 
herein the metric parameter amounts to 𝜆=1. A 
total of eight metrics are considered, including: (i) 
phase 𝑀𝜑, (ii) peak 𝑀𝑝, (iii) RMS 𝑀rms, (iv) 

magnitude 𝑀𝑚, (v) wavelet 𝑀𝑤, (vi) frequency 
normalized wavelet 𝑀𝑤𝑓, (vii) stationarity 𝑀𝑆 and 

(viii) bicoherence 𝑀b metrics. 

The phase metric accounts for mean phase 
discrepancy, and its relative exponents yields [3]: 

𝐴𝜑 =
𝑡𝑙𝑎𝑔

𝑇𝑐
,    (2) 

where 𝑡𝑙𝑎𝑔  is the time delay. The time delay is 

obtained as argument of the maxima of the cross-
correlation between the two signals as: 

𝑡𝑙𝑎𝑔 = argmaxt 𝑥(𝑡) ⋆ 𝑦(𝑡).  (3) 

The coefficient 𝑇𝑐  is case-dependent and it is 
selected based on what is considered to be large 
delay between the studied signals. 

The relative exponent for the peak metric is 
simply the relative difference between the two 
peaks of the signals, which yields:  

𝐴𝑝 =
max 𝑡|𝑥(𝑡)|−max𝑡|𝑦(𝑡)| 

max𝑡|𝑥(𝑡)|
.  (4) 

In bridge aerodynamics, the RMS of a signal is an 
important quantity, as the incoming wind 
fluctuations are generally assumed to be 
stationary and Gaussian, while a linear 
aerodynamic model is utilized commonly. The 
relative exponent for the RMS metric is given as:  

𝐴rms =
√∫ [𝑥(𝑡)]2d𝑡

𝑇
0 −√∫ [𝑦(𝑡)]2d𝑡

𝑇
0

√∫ [𝑥(𝑡)]2d𝑡
𝑇
0

.  (5) 

The preceding metrics are based on an averaged 
quantity of the two signals. To further study the 
discrepancies in the time-localized magnitude of 
the signals, the relative exponent magnitude 
metric is formulated as [3]: 

𝐴m = √
∑ (𝑥𝑤[𝑖]−𝑦𝑤[𝑖])

2𝑁𝑤
𝑖=1

∑ (𝑥𝑤[𝑖])
2𝑁𝑤

𝑖=1

,   (6) 

where 𝑥𝑤 = 𝑥𝑤[𝑛], and 𝑦𝑤 = 𝑦𝑤[𝑛] for 𝑛 ∈

{1, 2, … , 𝑁𝑤} are the discrete and warped signals of 
𝑥(𝑡)  and y(𝑡), respectively, and 𝑁𝑤 is the number 
of warped steps. The warped signals are obtained 
using the Dynamic Time Warping (DTW) 
algorithm. The DTW algorithm aligns the peaks of 
the signals by stretching, but not scaling [3]. Since 
we are interested only in the relative magnitude 
for 𝑀𝑚, we use the warped signals in order to 
minimize for the local discrepancies in the 
frequency and phase. The effect of DTW will be 
shown on an illustrative example in Sec. 3. 

To account for the local discrepancies in the time-
frequency plane, the wavelet metric is introduced. 
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The relative exponent for this metric is obtained 
by normalizing the integrated difference of the 
magnitude of the wavelet coefficients 𝑊𝑥(𝑎, 𝑡) and 

𝑊𝑥(𝑎, 𝑡) in the time-frequency plane as: 

𝐴𝑤 =
∫ ∫ ||𝑊𝑥(𝑎,𝑡)|−|𝑊𝑦(𝑎,𝑡)||d𝑡d𝑎

𝑇
0

∞
0

∫ ∫ |𝑊𝑥(𝑎,𝑡)|d𝑡d𝑎
𝑇
0

∞
0

,     (7) 

where the 𝑊𝑥(𝑎, 𝑡)  for 𝑥(𝑡) are obtained as:   

𝑊𝑥(𝑎, 𝑡) =
1

√|𝑎|
∫ 𝑥(𝜏)𝜓 (

𝑡 − 𝜏

𝑎
) d𝜏

∞

−∞

 (8) 

where 𝑎 is the scale and 𝜓 is the parent wavelet. 
As a parent wavelet, herein we utilize the Morlet 
wavelet, for which the 𝑎 is inversely proportional 
of the frequency 𝑓 as 𝑓 ≅ 𝑓0/𝑎  and 𝑓0 is the 
wavelet’s central frequency. 

The wavelet metric incorporates the total 
discrepancy in the time-frequency plane. To 
further illuminate whether this discrepancy is due 
to the amplitude or frequency difference, we 
introduce the frequency normalized wavelet 
metric, for which the relative exponent yields as: 

𝐴𝑤𝑓 = ∫
∫ |

|𝑊𝑥(𝑎,𝑡)|

max𝑎|𝑊𝑥(𝑎,𝑡)| 
−

|𝑊𝑦(𝑎,𝑡)|

max𝑎|𝑊𝑦(𝑎,𝑡)| 
|d𝑎

∞
0

∫
|𝑊𝑥(𝑎,𝑡)|

max𝑎|𝑊𝑥(𝑎,𝑡)| 

∞
0 𝑑𝑎

d𝑡.
𝑇

0
   (9) 

Practically, in 𝑀𝑤𝑓  we look at the discrepancies in 

the normalized instantaneous spectra. If value of 

𝑀𝑤𝑓=1 and 𝑀𝑤<1, the discrepancies in the signals 

are mainly in the amplitude while the relative 
frequency content of the signals is similar. This will 
be further discussed in the following section.  

Another property, which is of interest in bridge 
aeroelasticity, is the stationarity of the response 
[4]. The stationarity metric is introduced herein, in 
order to identify whether both of the signals share 
the same property of stationarity. If both are non-
stationary, 𝑀𝑠 quantifies the discrepancies in the 
nonstationary part of the signals. To facilitate this, 
we formulate the relative exponent as a function 
of a stationarity index 𝑑 as: 

𝐴𝑆

{
 
 

 
 

→ ∞ if 𝑑𝑥 ≠ 𝑑𝑦 ,

= 0 if 𝑑𝑥 = 𝑑𝑦 = 0,

=
∫ ∫ ||𝑊𝑥

𝐹(𝑎,𝑡)|−|𝑊𝑦
𝐹(𝑎,𝑡)||d𝑡d𝑎

𝑇
0

∞
0

∫ ∫ |𝑊𝑥
𝐹(𝑎,𝑡)|d𝑡d𝑎

𝑇
0

∞
0

if 𝑑𝑥 = 𝑑𝑦 = 1.

  (10) 

The stationarity index 𝑑𝑥 = 𝑑(𝑥) take value of 0 if 
𝑥(𝑡) is stationary and value of 1 otherwise. The 
determination of this index is based on 
discriminating test statistics between the signal 
𝑥(𝑡) and stationary surrogate signals. In this case, 
the discriminating statistics are based on Log-
spectral deviation. If the stationarity tests indicate 
that both signals are non-stationarity, the third 
condition in Eq. 10 is used to evaluate the 
discrepancies only in the non-stationary part of t 
wavelet magnitude |𝑊𝑥

𝐹(𝑎, 𝑡)|. This part is 
obtained by filtering the wavelet coefficients, 
utilizing a threshold value for the spectrogram as: 

𝑊𝑥
𝐹(𝑎, 𝑡) = {

0 𝑖𝑓 𝑆𝑥(𝑎, 𝑡) < 𝑆tr(𝑎, 𝑡),

𝑊𝑥(𝑎, 𝑡) 𝑖𝑓 𝑆𝑥(𝑎, 𝑡) ≥ 𝑆tr(𝑎, 𝑡),
  (11) 

where 𝑆𝑥 = |𝑊𝑥(𝑎, 𝑡)|
2  is the spectrogram of 𝑥(𝑡) 

and 𝑆tr is the threshold value based on the 
surrogate signals. For further information on the 
filtering and stationarity test, we refer to [4]. 

Finally, the last metric utilized herein is based on 
the bicoherence 𝑏𝑥(𝑓1, 𝑓2). The bicoherence has 
been utilized in bridge aerodynamics recently, to 
identify some nonlinear features such as higher 
order harmonics in the forces [5] and is defined as   

𝑏𝑥(𝑓1, 𝑓2) =
|𝐸[𝑋(𝑓1)𝑋(𝑓2)𝑋

∗(𝑓1+𝑓2)]|
2

𝐸[|𝑋(𝑓1)𝑋(𝑓2)|
2]𝐸[|𝑋∗(𝑓1+𝑓2)|

2]
  (12) 

where 𝐸[∙] denotes the expectation operator and 
𝑋(𝑓) is the Fourier transform of 𝑥(𝑡). The relative 
exponent of 𝐴b then yields: 

𝐴𝑏 {
→ ∞ 𝑖𝑓 𝑘𝑥 ≠ 𝑘𝑦
= 0 𝑖𝑓 𝑘𝑥 = 𝑘𝑦

   (13) 

where the index 𝑘𝑥=1 if 𝑏𝑥(𝑓1, 𝑓2) ≥ 𝜀, and 0 
otherwise. The threshold 𝜀 ∈ [0,1] is defined to 
filter the noise. Although an additional condition 
to quantify the nonlinear coupling can be 
introduced as in the third condition in Eq. (10), it 
was realized that the bicoherence is highly 
sensitive to noise and linear periodic components 
at 𝑓3 = 𝑓

1
+ 𝑓

2
. Therefore, for now we use 𝑀b 

only to identify if there are nonlinear features in 
one or both signals. To quantify the discrepancies 
in the nonlinear features, it is intended in the 
future to use the wavelet bicoherence to alleviate 
some of the difficulties in the bicoherence due to 
noise and the Heisenberg principle. 
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3 Illustrative examples 

In this section, we study the comparison metrics 
for four basic signals with respect to a reference 
one and track their behaviour by changing certain 
signal properties. The considered reference (𝑥𝑟) 
and basic signals (𝑥𝑖) are given as:  

𝑥𝑟 = A1cos(𝜔1𝑡) + 𝐴2 cos(𝜔2𝑡 +
𝜋

3
) + 𝜂1(𝑡),     

𝑥1 = A1cos(𝜔1𝑡 + 𝜑1) + 𝐴2 cos (𝜔2𝑡 +
𝜋

3
+𝜑2) + 𝜂2(𝑡),   

𝑥2 = 2A1cos(𝜔1𝑡) + 2𝐴2 cos (𝜔2𝑡 +
𝜋

3
) + 𝜂3(𝑡),    

𝑥3 = A1cos(𝜔1𝑡) + 𝐴2 cos (𝜔2𝑡 + 𝐾𝑡
2 +

𝜋

3
 ) + 𝜂3(𝑡),  

𝑥4 = A1 cos(𝜔1𝑡) + 𝐴2 cos (𝜔2𝑡 +
𝜋

3
 ) , 

          +
(𝐴1 + 𝐴2)

2
cos(𝜔1𝑡) cos (𝜔2𝑡 +

𝜋

3
 ) + 𝜂4(𝑡),  

(14) 

where A1=1; A2=1.3; ω1=2×2𝜋; ω2=2.8×2𝜋; 𝜑1= 𝜋; 

𝜑2= 𝜋/6;   𝐾 = (ω3 − ω2)/2𝑇; ω3=3.6×2𝜋 and 𝑇 is 
the signal length and 𝜂 is white noise with small 
amplitude and zero mean. The reference value for 
the phase metric is chosen as 𝑇𝑐=𝜋 /ω2. 

By studying 𝑥1 and 𝑥𝑟, we realize the effect of 
phase-shift, different for both harmonics, on the 
comparison metrics (cf. Figure 1). This example is 
chosen as a phase lag is a common manifestation 
of the fluid memory for the unsteady aerodynamic 
models. As expected, 𝑀𝜑 results in a lower value. 
In Figure 2, a sample time histories of original and 
warped signals are shown. It is noteworthy to 
mention that in this case, the magnitude metric 
obtained using the warped signals results in value 
of 0.88. Using the unwarped signals, 𝑀𝑚 amounts 
to a value of 0.27, which is unrealistic as the 
signals are only shifted. Due to the added noise, 
the wavelet metrics, 𝑀𝑤 and 𝑀𝑤𝑓, result in values 

slightly less than 1. Considering the rest of the 
metrics, the signals are similar. 

The second example is constructed in such way to  

study the amplitude difference. The amplitude of 
the signal 𝑥2 is two times larger than 𝑥𝑟. Increasing 
the amplitude 100 % in such way, affects the RMS, 
magnitude, peak, wavelet metrics (cf. Figure 2). 
With exception of the magnitude metric, the rest 
of the metrics amounts to approx. 0.4, which is 
logical as exp(-1)≈0.37. A notable observation is 
that the value of the frequency normalized 
wavelet metric 𝑀𝑤𝑓, remains 1. To further study 

this effect, the normalized wavelet magnitude of 
both signals is depicted in Figure 4. It is clear that 
the relative frequency content is similar for both 
signals. As expected, the phase, stationarity and 
bicoherence metrics amount to 1. The quasi-
steady aerodynamic nonlinearity of the buffeting 
forces is commonly manifested through amplitude 
dependence. 

Figure 1. Comparison metrics 𝑀(𝑥𝑟 , 𝑥1) 

Figure 3. Comparison metrics 𝑀(𝑥𝑟 , 𝑥2)

Figure 2. Sample time history of 𝑥𝑟  and 𝑥1 (left) and corresponding warped time histories of  𝑥𝑟,𝑤 and 𝑥1,𝑤 (right)
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Figure 4. Wavelet magnitude of 𝑥𝑟  (left) and 𝑥2 (right), normalized with the maximum magnitude of 𝑥𝑟  

In the third example, we study the effect of 
frequency modulation of one of the harmonics of 
the reference signal. The signal 𝑥3 is practically a 
linear chirp, where the frequency is modulated. As 
expected, the stationarity metric is 0 (cf. Figure 5), 
as 𝑥3  is a nonstationary signal, which could be 
seen as well in the wavelet magnitude in Figure 6. 
It is noteworthy to mention that while the wavelet 
based metrics result in low values, the peak and 
RMS metrics are close to 1. This further reinforces 
the claim why multicritera assessment is required 

 

Figure 5. Comparison metrics 𝑀(𝑥𝑟 , 𝑥3) 

 

Figure 6. Normalized wavelet magnitude of 𝑥3.The 
colour bar is identical as in Figure 4  

beyond discussions based on the magnitude. 
Unlike the previous example, 𝑀𝑤𝑓  has similar 
value as 𝑀𝑤, which brings the conclusion that the 
discrepancies in 𝑀𝑤 are due to relative frequency 
modulations, rather than amplitudes. 

The last example is constructed as such to include 
a quadratic phase coupling between the two 
harmonics. Figure 7 depicts the comparison 
metrics for 𝑥𝑟   and 𝑥4. It is obvious that the 
nonlinear interaction influences mostly the 
magnitude metrics, and the bicoherence metric is 
zero. The spectrogram of 𝑥4 (not shown) indicated 
additional two frequencies at 𝑓1+ 𝑓2 and 𝑓2- 𝑓1. 

However, from the bicoherence it is easy realize 
that these frequencies are a product of nonlinear 
interaction (cf. Figure 8). Looking at the 
bicoherence magnitude, it is clear that the 
corresponding frequency couples for 𝑥4 are due to 
nonlinear interaction, as the bicoherence for the 
reference signal is trivial due to noise. As noted in 
[5], the bicoherence is useful for identifying higher 
order harmonics in bridge aerodynamics. 
Nevertheless, because of the large amount of 
divisions of each time history for the expectation   

 

Figure 7. Comparison metrics 𝑀(𝑥𝑟 , 𝑥4) 
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Figure 8. Bicoherence of 𝑥𝑟  (left) and 𝑥4 (right). The red lines indicate frequency couples: (𝑓1,- 𝑓2) and (𝑓2, 𝑓1) 

operator in Eq. (12), the identification of nonlinear 
features would be probably more reliable if it is 
based on the wavelet bicoherence. 

4 Application to bridge aeroelasticity 

After studying the behaviour of the comparison 
metrics on basic examples, in this section we 
apply these metrics on a practical example from 
bridge aeroelasticity. The quantity of interest is 
the aeroelastic response of a two-dimensional 
bridge deck, which is immersed in a turbulent 
flow. For simplicity, the structural system is 
considered to have a vertical ℎ and torsional 𝛼 

degree of freedom. The reference deck section is 
similar to the one of the Great Belt bridge, which 
is a 31 m wide streamlined box girder (cf. Figure 
9). The mass and mass moment of inertia are set 
as  22.74 t/m and 2.47×103 tm2/m, respectively, 
while the first vertical and torsional frequencies 
are 0.100 Hz and 0.278 Hz, respectively. A 
structural damping ratio of 0.5% of the critical 
damping is selected for all analyses. 

The aeroelastic analyses are performed under a 
turbulent wind, utilizing a CFD model and two 
semi-analytical models. Wind speeds in the range 

of 𝑈=20-60 m/s are considered, with 6% isotropic 
turbulence intensity. The vortex particle method is 
utilized for the discretization of the Navier-Stokes 
equations for the CFD model, including free-
stream turbulence [6]. As semi-analytical models 
for the aerodynamic forces, the Linear Unsteady 
(LU) and Quasi-steady (QS) models are considered. 
The LU model is linear and accounts for the fluid 
memory, while the QS model is nonlinear and 
disregards the fluid memory. Further information 
and mathematical formulation on these models is 
given in [1]. Before subjecting the structure to the 
turbulent flow, a CFD simulation without a section 
is conducted in order to track the wind 
fluctuations at the section location.  

 

Figure 9. Sample particle map of bridge deck 
immersed in turbulent flow 

 

Figure 10. RMS of ℎ (left) and 𝛼 (right) under turbulent wind with 6% turbulence intensity
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Figure 11. Sample time histories of the ℎ (left) and 𝛼 (right) at  𝑈= 60m/s with 6% turbulence intensity 

Figure 12. Comparison metrics 𝑀(𝐶𝐹𝐷, 𝐿𝑈) (blue) and 𝑀(𝐶𝐹𝐷, 𝑄𝑆) (red): 𝑈=30 m/s for ℎ (left) and 𝛼 (left-
center); 𝑈=60 m/s for ℎ (center-right) and 𝛼 (right) 

The tracked fluctuations serve as an input for the 
semi-analytical models, ensuring one-to-one 
comparison. The CFD model is taken as a 
reference in the following discussion. 

For illustration, Figure 10 presents the RMS of the 
displacements for the selected models. Based on 
this figure, we can observe that in case of the 
vertical degree of freedom, the LU model 
performs better than the QS model, except at 
𝑈=60 m/s. In case of the torsional displacements, 
the LU is closer to the reference than the QS 
model, especially at high wind speeds. Figure  
presents a sample time histories of the 
displacements at 𝑈= 60 m/s. 

To further study the effect of fluid memory and 
quasi-steady nonlinearity, the comparison metrics 
are computed for two representative wind speeds 
of 30 m/s and 60 m/s (cf. Figure 12). Generally, 
the quasi-steady assumption is more rigorous than 
the linearity, as the comparison metrics for the LU 
models attain higher values than for the QS 
model.  The quasi-steady assumption influences 
the phase significantly, although a difference is 
apparent for the high wind speed for the LU 
model. Looking the comparison metrics for ℎ at 
𝑈=60 m/s, we can realize why considering only the 
RMS as a metric is insufficient. Particularly, the QS 

model performs better for the RMS and the peak 
metrics. However, its performance is worse for 
the magnitude and wavelet-based metrics. This 
indicates that only the average quantities of the 
CFD model are in better correspondence with the 
QS model and not the local quantities. Since the 
input may be considered as identical, to draw a 
general conclusion that the quasi-steady 
nonlinearity is governing at high wind speeds, all 
metrics should support such statement. In this 
case, we may only indicate that the influence of 
the nonlinearity becomes apparent in the RMS 
and peak at high wind speeds. In Figure 13, the 
normalized wavelet magnitude for the 𝛼 at 𝑈= 60 
m/s is presented. It is noteworthy to notice, that 
𝑀𝑤𝑓  is the same for both models, while 𝑀𝑤 is 

worse for the QS model (cf. Figure 12). This 
indicates that the difference is due to magnitude 
underestimation, while that the relative frequency 
content is the same for the QS and LU models 
Another notable property for ℎ at 60 m/s is that it 
features possible local nonstationarity. The 
stationarity index (cf. Eq. 10) resulted in 1 only for 
the LU model, for 95% confidence interval of Log-
spectral deviation. Nevertheless, the filtered 
nonstationary part |𝑊𝐹| is computed using 99% 
confidence interval for all models (cf. Figure 14). 
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Figure 13. Normalized wavelet magnitude of 𝛼 at 𝑈=60 m/s for CFD (left), LU (center) and QS (right) models 

Figure 14. Filtered nonstationary part of the normalized wavelet magnitude |𝑊𝐹| of ℎ at 𝑈=60 m/s for the 
CFD (left), LU (centre) and QS (right) models. The colour bar is identical as in Figure 13   

Nonstationary “spikes” are visible for all models, 
indicating amplitude modulation. This could be 
attributed to initiation of divergent oscillations as 
the critical flutter velocity is ≈72 m/s for this case-
study. The stationarity index is highly dependent 
on the discriminating statistic used and the 
filtering on the confidence interval; hence, further 
investigation on this regard is necessary 

5 Summary and Conclusion 

In summary, in this paper we studied the local and 
global discrepancies between time histories based 
on comparison metrics. Eight metrics were 
introduced based on the phase, magnitude, RMS, 
time dependent frequency content, stationarity 
and bicoherence. The metrics were initially 
examined on illustrative examples. This was 
followed by an examination of the response of a 
bridge deck due to wind excitation, to study the 
influence of the quasi-steady and linear 
assumptions.  

In conclusion, the results indicate that 
multicriteria assessment of the time dependent 

response is necessary to study in-depth the 
influence of the assumptions, which are implied in 
the aerodynamic models. The metrics represent 
different signal properties and some of them are 
redundant. Therefore, an assessment should 
consider all metrics individually. 
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