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Abstract 
A physics-informed machine learning model, in the form of a multi-output Gaussian process, is 
formulated using the Euler-Bernoulli beam equation. Given appropriate datasets, the model can be 
used to regress the analytical value of the structure’s bending stiffness, interpolate responses, and 
make probabilistic inferences on latent physical quantities. The developed model is applied on a 
numerically simulated cantilever beam, where the regressed bending stiffness is evaluated and the 
influence measurement noise on the prediction quality is investigated. Further, the regressed 
probabilistic stiffness distribution is used in a structural health monitoring context, where the 
Mahalanobis distance is employed to reason about the possible location and extent of damage in 
the structural system. To validate the developed framework, an experiment is conducted and 
measured heterogeneous datasets are used to update the assumed analytical structural model. 

Keywords: Gaussian process; physics-informed; machine learning; stiffness regression; structural 
health monitoring, model updating.

1 Introduction 
Machine learning has been extensively applied in 
structural engineering, especially in the structural 
health monitoring (SHM) field, as the availability of 
data collected from sensors increases [1]. The 
heterogeneity of the collected datasets along with 
the knowledge of physical relations between them, 
usually represented as partial differential 
equations (PDEs), have motivated the recent use of 
physics-informed machine learning models to 
extract meaningful information from measured 
data. In these algorithms, the governing PDE is built 
into the machine learning model, effectively 
integrating measurements and mathematical 
models [2]. Gaussian processes (GP) [3] have been 
extensively used for such a task, as they offer a 
non-parametric probabilistic view on the modelling 
scheme, which is usually framed in a Bayesian 
manner [4, 5]. Particular applications of the 
physics-informed GPs have been observed as an 
analytical model of the latent curvature in a sleeper 

beam and the inverse problem of identifying the 
Reynolds number of a CFD simulation [6, 7]. In this 
paper, a physics-informed Gaussian process model 
for the Euler-Bernoulli beam formulation is 
developed to simultaneously infer physical 
quantities of interest, whilst considering the 
problem of identifying the correct structural 
bending stiffness. The model is defined in section 
2, along with the optimization strategies, while 
section 3 is used to demonstrate the inference 
capabilities and tolerances to measurement noise 
in a numerical and controlled manner. Section 4 
utilizes experimental measurements to update an 
analytical model of a steel beam. 

2 Physics-informed GP model of an 
Euler-Bernoulli beam 

2.1 Model definition 

Consider the general linear form of the Euler-
Bernoulli beam equation: 
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𝐸𝐼
ௗర௨(𝒙)

ௗ௫ర = 𝑞(𝒙),  (1) 

where 𝑢(𝒙) are the beam deflections at positions 
𝒙 due to a given input load 𝑞(𝒙) and 𝐸𝐼 is the 
structural bending stiffness, corresponding to the 
Young’s modulus of elasticity 𝐸 and the second 
moment of area 𝐼. 

In the physics-informed model derived here, the 
deflections 𝑢(𝒙) are represented as a zero-mean 
Gaussian process: 

𝑢(𝒙) ~ 𝒢𝒫(𝟎, 𝑘௨௨(𝒙, 𝒙ᇱ; 𝜽)),   (2) 

where 𝑘௨௨ is a covariance kernel parametrized by 
the values in 𝜽. Several kernels are available in 
literature, and without loss of generality, the 
deflection model is here defined with the universal 
squared exponential kernel 

𝑘௨௨(𝑥, 𝑥ᇱ; 𝜽) = 𝜎௦
ଶexp ൬−

ଵ

ଶ
ቀ

௫ି௫ᇲ

ℓ
ቁ

ଶ

൰,   (3) 

where 𝜽 = {𝜎௦, ℓ} contains the kernel standard 
deviation 𝜎௦ and the length scale ℓ, that controls 
the covariance smoothness [3]. 

By exploiting the linear aspect of GPs, a similar 
model can be derived for the forces: 

𝑞(𝒙) ~ 𝒢𝒫(𝟎, 𝑘௤௤(𝒙, 𝒙ᇱ; 𝜽, 𝐸𝐼)),   (4) 

where the kernel 𝑘௤௤ is derived from 𝑘௨௨ through 
the beam model differential equation, such that  

𝑘௤௤(𝑥, 𝑥ᇱ; 𝜽, 𝐸𝐼) =

     𝐸𝐼 
ௗర

ௗ௫ర ቀ𝐸𝐼
ௗర ௞ೠೠ(௫,௫ᇲ;𝜽)

ௗ௫ᇲర ቁ. 
(5) 

The cross-covariance functions between the 
applied loads and the resulting deflections can be 
derived as 

𝑘௨௤(𝑥, 𝑥ᇱ; 𝜽, 𝐸𝐼) = 𝐸𝐼
ௗర ௞ೠೠ(௫,௫ᇲ;𝜽)

ௗ௫ᇲర . (6) 

In a similar manner, the Gaussian process models 
for other related quantities of interested provided 
by the model, such as rotations 𝑟, strains 𝜀, bending 
moments 𝑚 and shear forces 𝑣 can be derived from 
𝑘௨௨ through the application of the respective linear 

differential operator. The complete Euler-Bernoulli 
beam model is then given by the multi-output GP 

[𝒖, 𝒓, 𝜺, 𝒎, 𝒗, 𝒒]୘ = 𝒢𝒫(𝝁௣, 𝑲௣), (7) 

with the prior mean 𝝁௣ = [𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎]୘ and the 
prior covariance matrix 𝑲௣ formed as 

𝑲௉ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝑲௨௨
௡ 𝑲௨௥ 𝑲௨ఌ 𝑲௨௠ 𝑲௨௩ 𝑲௨௤

𝑲௥௨ 𝑲௥௥
௡ 𝑲௥ఌ 𝑲௥௠ 𝑲௥௩ 𝑲௥௤

𝑲ఌ௨ 𝑲ఌ௥ 𝑲ఌఌ
௡ 𝑲ఌ௠ 𝑲ఌ௩ 𝑲ఌ௤
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௡

⎦
⎥
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⎥
⎥
⎤

, (8) 

where 𝑲௔௕ = 𝑘௔௕(𝒙, 𝒙ᇱ; 𝜽, 𝐸𝐼) is a covariance 
matrix generated with its respective kernel 
function. To account for measurement noise in 
each dataset, an additional diagonal block matrix 
𝑲௔

௡ is added to the covariance of each kernel 
matrix, calculated as: 

𝑲௔
௡ = 𝜎௔

ଶ𝛿௜௝(𝒙, 𝒙′),   (9) 

where 𝛿௜௝  is the Kronecker delta operator and 𝜎௔ is 
the noise standard deviation value for dataset 𝑎, 
such that 𝑲௔௔

௡ = 𝑲௔௔ + 𝑲௔
௡. The standard 

deviation for each dataset, when unknown, is 
included in a parameter vector 𝝓 and becomes an 
optimizable variable within the model. 

Accounting for boundary conditions (BCs) in the 
model is possible through the application of a 
modified Green’s function to the kernel equation 
[8, 9], which restricts the generated model to a 
single structural system. Instead, in this work BCs 
are accounted for through the creation of an 
artificial dataset, at the appropriate locations, that 
measure the BC values in a noise-less manner. 

2.2 Model selection 

The selection of an appropriate model in face of the 
measured noisy data involves the optimization of 
the parameter vector 𝝍 = {𝜽, 𝐸𝐼, 𝝓}, that is, the 
kernel values, the bending stiffness and the noise 
in each dataset, respectively. For that matter, a 
probability distribution 𝑝(𝝍) can be created to 
represent the prior beliefs on each of the model 
parameters. Following the assumption of 
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independence in the parameters 𝝍, the log form of 
this distribution is calculated as: 

log 𝑝(𝝍) =  ∑ log 𝑝(𝜓௜)௜ .   (10) 

Moreover, when data is presented to the model in 
the form of 𝒚 = [𝒖, 𝒓, 𝜺, 𝒎, 𝒗, 𝒒]୘, measured at 

locations 𝒙 = ൣ𝒙௨, 𝒙௥, 𝒙ఌ , 𝒙௠, 𝒙௩ , 𝒙௤൧
୘

, for 𝒙, 𝒚 ∈

ℝே×𝟏, the log-likelihood can be analytically 
calculated by: 

log 𝑝(𝒚|𝒙, 𝝍) = −
ଵ

ଶ
𝒚୘𝑲௣

ିଵ𝒚 −

     
ଵ

ଶ
logห𝑲௣ห −

ே

ଶ
log 2𝜋,   

(11) 

where 𝑲௣ is the global covariance matrix as shown 
in equation 8, calculated for all datasets contained 
in 𝒙 and 𝒚 [3]. 

Following Bayes’ rule, the log-prior and log-
likelihood can be combined to generate a posterior 
distribution that reflects the influence of measured 
data in the model parameters, such that 

log 𝑝(𝝍|𝒚, 𝒙) ∝ log 𝑝(𝒚|𝝍, 𝒙) +
     log 𝑝(𝝍).   (12) 

The formulation above is proportional to the true 
log-posterior up to a value defined by the marginal 
likelihood of the system, which is constant with 
respect to the parameters 𝝍. The marginal 
likelihood takes the form of an intractable integral 
for most probabilistic systems, and therefore the 
parameter selection is carried out as an 
optimization problem given by: 

𝝍 = argmax𝝍 log 𝑝(𝝍|𝒚, 𝒙),   (13) 

which is popularly known as maximum a posteriori 
estimation. The maximization of this posterior 
distribution is estimated numerically in a 
probabilistic approach through the Metropolis-
Hastings (MH) algorithm [10]. The algorithm is a 
Markov chain Monte Carlo method that returns a 
sequence of auto-correlated random samples of 
the parameters 𝚿 = [𝝍଴, 𝝍ଵ, … , 𝝍௞]୘, which are 
representative of the true posterior 
distribution 𝑝(𝝍|𝒚, 𝒙). 

2.3 Model inference 

Predictions of quantities 𝒚∗ at unobserved 
locations 𝒙∗ can be made by conditioning the 
predictive distribution on the noisy observations 
used during training, and integrating over the 
identified parameter distribution, 

𝑝(𝒚∗|𝒙∗, 𝒚, 𝒙) =
     ∫ 𝑝(𝒚∗|𝒙∗, 𝒚, 𝒙, 𝝍)𝑝(𝝍|𝒚, 𝒙)𝑑𝝍.   (14) 

The inner probability distribution in the above 
formulation corresponds to the standard GP 
predictive posterior when no uncertainty in the 
parameters 𝝍 exists. Due to the Gaussianity 
assumptions of the GP model, this probability takes 
the closed form of 𝑝(𝒚∗|𝒙∗, 𝒚, 𝒙, 𝝍) =
𝒩(𝝁௬∗, 𝑲௬∗), with the mean 𝝁௬∗ and the 
covariance matrix 𝑲௬∗ calculated by, respectively, 

𝝁௬∗ = 𝑲∗
୘𝑲௣

ିଵ𝒚,   (15) 

𝑲௬∗ =  𝑲∗∗ − 𝑲∗
்𝑲௣

ିଵ𝑲∗,   (16) 

where 𝑲∗ = ൣ𝑘௔௨(𝒙∗, 𝒙′), … , 𝑘௔௤(𝒙∗, 𝒙′)൧
୘

 is the 
cross-covariance matrix between unobserved 
locations and training positions for all training 
datasets, and 𝑲∗∗ = 𝑘௔௔(𝒙∗, 𝒙′∗) is the self-
covariance matrix, for the particular quantity of 
interest 𝑎 [3, 11].  

A closed-form solution of Equation 14 is generally 
intractable, and therefore the mean and 
covariance parameters of the predictive 
distribution are estimated as: 

𝑝(𝒚∗|𝒙∗, 𝒚, 𝒙) ≈
ଵ

ே
∑ 𝑝(𝒚∗|𝒙∗, 𝒚, 𝒙, 𝝍𝒊)

ே
௜ ,   (17) 

where 𝝍௜ ~ 𝑝(𝚿|𝒚, 𝒙) are draws from the 
parameter posterior approximated with the MH 
algorithm [11]. The predictive posterior finally 
takes the form of a multivariate mixture of 
Gaussians, following the assumption of Gaussian 
noise in the dataset 𝒚. 

3 Numerical experiments 
In this section, a numerical investigation of the 
presented method is carried out for a cantilever 
beam of length 𝐿 with constant bending stiffness 
𝐸𝐼, subjected to a uniformly distributed load of 
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magnitude 𝑞, as shown in Figure 1. For such a case 
an analytical solution exists, such that 

𝑢(𝑥) =
௤௫మ

ଶସாூ
(𝑥ଶ − 4𝐿𝑥 + 6𝐿ଶ).   (18) 

This solution is further used as a benchmark for the 
model’s predictions, along with the true bending 
stiffness 𝐸𝐼, that is compared to the value 
regressed by the GP model. The software Matlab is 
used for the numerical implementation of the 
method. 

 
Figure 1. Benchmark structure for a numerical case: 
a cantilever beam with constant stiffness EI and 
length L, subjected to a uniformly distributed load 
of magnitude q. 

3.1 Stiffness regression and latent function 
inference 

In this work, prior knowledge on the noise values 
and the kernel parameters is modelled with a 
uniform distribution 𝑝(𝜓௜) = 𝒰(−∞, ∞), while 
the bending stiffness is treated in constrained 
manner as 𝑝(𝜓ாூ) = 𝒰(0.1𝐸𝐼୲୰୳ୣ, 2.0𝐸𝐼୲୰୳ୣ). It is 
further assumed that four deflection sensors, 
equally spaced throughout the length of the 
structure, monitor the system. These sensors 
normally operate under the influence of 
environmental conditions and, due to the nature of 
the measurement, present a variable level of 
uncertainty in their outputs. Noise values are 
herein simulated assuming a Gaussian model 
𝑢௡~𝒩(𝑢௔௡௔(𝑥), 𝜎௡

௨), where 𝑢௔௡௔(𝑥) is the 
analytical solution and 𝜎௡

௨ is a standard deviation 
given by 

𝜎௨
௡ =  

|௨ෝ|

ୗ୒ୖ
 ,   (19) 

where |𝑢ො| is the maximum absolute displacement 
at the tip of the cantilever beam, and SNR is a 
signal-to-noise ratio parameter.  

By providing the load value 𝑞, along with a set of 
sensor readings obtained from different sensor 

locations along the structure, and contaminating 
the measurements with a noise defined by a 
SNR = 10, the GP model can be trained and used 
for further inference. A sample of the predicted 
displacement field is shown in Figure 2. Despite the 
noisy measurements, the GP model is able to 
accurately predict the displacement values along 
the length of the beam. In addition, the model 
uncertainty, represented by the prediction’s 
standard deviation 𝜎௨, increases along the length 
of the structure. This effect reflects the boundary 
condition assumption, introduced as an additional 
artificial noise-less sensor located at 𝑥/𝐿 = 0. 

 
Figure 2. Normalized mean 𝜇௨ and standard 
deviation 𝜎௨ of the displacement field predictions 
based on 5 data points collected by 4 noisy sensors 
along the structure.  

 
Figure 3. Correlation matrix of the probabilistic 
model parameters optimized using the MH 
algorithm. The kernel values 𝜎௦ and ℓ show a 
positive degree of correlation, whereas the 
remaining parameters are uncorrelated. 
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Once the model is optimized, a set of auto-
correlated parameters is returned from the MH 
algorithm, which approximate the posterior 
parameter distribution 𝑝(𝝍|𝒚, 𝒙). The results, 
shown in Figure 3, reflect the GP model uncertainty 
on each of the parameters in question. 

Of particular interest in the parameter model is the 
stiffness distribution, shown in Figure 4. The mean 
value of 𝑝(𝜓ாூ) approximates the true stiffness 
𝐸𝐼୲୰୳ୣ with a 0.63% error. The standard deviation, 
calculated as 0.023𝐸𝐼୲୰୳ୣ, reflects the model 
uncertainty on the stiffness, and is a function of the 
training dataset. Further, a normalized version of 
the stiffness distribution is defined as 𝑝(𝜓ாூ/
𝐸𝐼௧௥௨௘)  =  𝒩(𝜇ாூ , 𝜎ாூ), and the Mahalanobis 
distance, given by 

𝑑ெ = ට
(ఓಶ಺ିଵ)మ

ఙಶ಺
మ , (20) 

is used to evaluate the quality of the predicted 
stiffness distribution. This formulation doesn’t only 
reflect the accuracy of the mean value, but also 
penalizes uncertain stiffness models. The 
Mahalanobis distance of the stiffness distribution 
in Figure 4 was calculated as 𝑑ெ = 0.40. 

 
Figure 4. The regressed probabilistic stiffness value 
of the structure. The distribution's mean value 
approaches the correct stiffness 𝐸𝐼௧௥௨௘, while the 
standard deviation represents the model 
uncertainty. 

In addition to the regressed parameters, the full 
trained GP model can also be used to infer physical 
quantities that were not directly measured, as 
shown in Figure 5.  

 
Figure 5. Mean 𝜇 and standard deviation 𝜎 of the 
inferences on the latent rotations 𝑟, strains 𝜀, 
moments 𝑚 and shear forces 𝑣, normalized by the 
maximum absolute analytical result of the 
respective physical quantity.  

Similarly to the displacement case, the mean values 
predicted for rotations, strains, bending moments 
and shear forces are in accordance with the 
analytical results, with a root mean squared error 
(RMSE) calculated for each of the normalized 
predictions in the order of 10ିଷ. The standard 
deviations of the rotation predictions follow the 
trend of the displacement values, increasing along 
the length of the structure, as a result for the 
boundary condition enforced as 𝑟(𝑥 = 0) = 0 rad. 
Similarly, the strains, bending moments and shear 
values show an increase in uncertainty closer to the 
support location, once again, due to the boundary 
conditions 𝑚(𝑥 = 𝐿) = 0 Nm and 𝑣(𝑥 = 𝐿) = 0 N. 

3.2 Influence of noise and number of data 
points 

The training of this physics-informed GP model 
takes place iteratively, by consecutive evaluations 
of the probabilistic a posteriori distribution in the 
Markov chain of the Metropolis-Hastings 
algorithm. A drawback of a standard Gaussian 
process model is that, for every model evaluation, 
a computational cost of 𝒪(𝑁ଷ) is involved.  
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Considering typical sampling rates for 
displacement sensors, a large amount of data can 
be quickly generated, and the usage of the GP 
model becomes unfeasible. Therefore, it is 
important to reduce the size of the dataset 
provided to the GP algorithm during training, while 
retaining a good prediction accuracy. An obvious 
correlation exists between the number of provided 
data points 𝑁ௗ௣ and the level of noise of the 
measurements, which is numerically controlled by 
the signal to noise ratio (SNR). In Figure 6 the 
interaction between noise and data size is 
observed. Considering four equidistant sensors (cf. 
Figure 2), the GP model has a clear improvement in 
accuracy when higher quality data, and more data 
points, are used as inputs. The trade-off exists as a 
model response to correctly identify the mean and 
standard deviation values, given the noisy points 
provided. 

3.3 Damage identification capabilities 

The parameter study presented in section 3.2 
allows for an informed decision on sensor quality, 
as well as the computational costs of the GP model, 
given a minimum desired stiffness prediction 
accuracy. If a good prediction is guaranteed, and a 
continuous monitoring of a structure is available, 
then the generated model can be used to detect, 
locate and estimate the severity of eventual 
damages. 

Damage is estimated through the deviation of the 
original numerical stiffness 𝐸𝐼୲୰୳ୣ using the 
Mahalanobis distance, calculated as per equation 
20. To simulate damage, a finite element model of 
the cantilever beam is generated, with a total of 20 
elements. The damage is simulated as a reduction 
in the bending stiffness of up to 40% of the original 
structure, in one element at a time, for all the finite 
elements in the model. In Figure 7 the deviations of 
the original structural stiffness are shown, in terms 
of 𝑑ெ, as a function of damage location and extent.  

 
Figure 7. Damage study: influence of stiffness 
reduction and corresponding location along the 
structure on the model's predictions. 

The results indicate an increase in the Mahalanobis 
distance value for progressive reductions of 
remaining stiffness and damage locations closer to 
the support. Given that the structural system is a 
cantilever, the system’s displacement response is 
more sensitive to changes in close to the support. 
For damage cases at locations 𝑥 > 0.60𝐿, the 
indication of damage may be obscured by the 
model’s prediction error, as a function of the noise 
levels. Nevertheless, given a damage condition 
closer to the support, the Mahalanobis distance 
allows for an informative decision of the location of 
damage. Once the location is known, the damage 
extent identification can be achieved, given the 
linearity condition of the system. 

4 Experimental model updating  
To validate the proposed model, an experimental 
study conducted on a simply supported steel beam 
is now presented. The true bending stiffness is 

Figure 6. Influence of measurement noise and the 
number of data points provided to the algorithm. A 
total of 4 equidistant sensors were used in this 
study, as shown in Figure 2. 
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initially unknown, but estimated through material 
and geometrical parameters to be 𝐸𝐼୧୬୧୲. The goal 
is to use measurement data and provide an 
optimized version of the bending stiffness value, in 
a model updating sense. Figure 8 displays the 
structure and the measurement setup. Different 
deflection sensors, such as laser deflectometers, 
displacement transducers, draw wire transducers 
and dial gauges were used to monitor the 
deflections due to the applied load. The degree of 
noise that contaminates the measurements varies 
with each measurement device, and is estimated 
by the GP through the standard deviation 𝜎௔ in 
equation 9, for each dataset 𝑎. In that manner, the 
developed framework is able to differentiate high 
and low quality measurements, and prioritize high-
fidelity datasets. In addition, inclinometers were 
used at both support locations to measure the 
structural rotation, and a strain gauge was installed 
at mid-span, on the bottom side of the beam. 

The SNRs calculated for the datasets are all higher 
than 15, and based on Figure 6, the number of data 
points provided to the GP algorithm can be 
defined. In this model a total of 𝑁ௗ௣ = 7 is used for 
all of the available measurement sets, as shown in 
Figure 9. The results indicate that the original 
calculated stiffness value 𝐸𝐼୧୬୧୲ is smaller than the 
real structural stiffness, as the structural 
responses, in the form of the measurements, tends 
to be smaller than predicted. The GP framework is 
able to correctly identify a model that explains the 
heterogeneous datasets composed by deflections, 
rotations and strains. In addition, it also ignores the 
deflection information at approximately 𝑥 = 0.6𝐿, 
as it appears to be originated from a 
malfunctioning sensor. The uncertainty levels, 
similarly as to the numerical example, reflect the 

boundary conditions informed to the GP model in 
the form of noise-less datasets. 

 
Figure 9. Normalized inference on the trained 
model using the experimental results, as compared 
to the initial, analytical model using 𝐸𝐼௜௡௜௧, shown 
in blue. 

To quantify the updated stiffness value, the 
probabilistic model of 𝜓ாூ is shown in Figure 10. 
The normalized 𝐸𝐼୧୬୧୲ is used as an initial point for 
the optimization algorithm, and a stable 
distribution is obtained with a mean 𝜇ாூ that is 
19.08% larger than initially assumed. The model 
uncertainty, measured in the form of the standard 
deviation of 𝜓ாூ, amounts for 𝜎ாூ = 0.11%.  

 
Figure 8. Experimental set-up: deflection, inclination and strain sensors are installed in a simply-supported 
steel beam. A static load uniformly distributed is applied with bags of steel spheres, resting on wooden plates. 
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Figure 10. Updated probabilistic bending stiffness 
model and the initial assumption 𝐸𝐼௜௡௜௧. 

5 Conclusions 
A physics-informed Gaussian process model has 
been developed on the basis of the Euler-Bernoulli 
beam theory. The model is of a hybrid nature, being 
driven simultaneously by the heterogeneous data 
provided to it, as well as the mathematical theory 
in the form of differential equations. The 
probabilistic model selection involves the 
optimization of the GP parameters, the 
identification of noise in the datasets and, most 
importantly, the regression of the bending stiffness 
value in the form of a probability distribution. The 
identified model can further be used to make 
probabilistic inferences in any physical quantity 
linked through the differential equation, even 
when no data from them is directly provided. 

The identified stiffness distribution is directly 
related to the noise levels of the data provided to 
the model. A highly noisy dataset requires, 
therefore, more information to provide a 
reasonable stiffness prediction. In consequence, a 
trade-off exists between the data quality and the 
number of data points provided to the GP model, 
which leads to higher computation costs. The 
regressed stiffness parameter, once correctly 
identified, can be used in a damage identification 
scenario to reason about the location and the 
severity of such a damage case. 

Finally, an experimental case has been used to 
showcase that the developed physics-informed GP 
in a model updating framework. For that matter, 
the model is also able to integrate heterogeneous 
datasets, with different measured physical 
quantities, and different sets of the same quantity 
with varying levels of noise. 
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