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ABSTRACT 

Long-span bridges are subjected to a multitude of dynamic excitations during their life span. 

To account for their effects on the structural system, several load models are used during design to 

simulate the conditions that the structure is likely to experience. These models are based on different 

simplifying assumptions, and are generally guided by parameters that are stochastically identified 

from measurement data, making their outputs inherently uncertain. This paper presents a probabilistic 

physics-informed machine learning framework based on Gaussian process regression for 

reconstructing dynamic forces based on measured deflections, velocities, or accelerations. The model 

can work with incomplete and contaminated data and offers a natural regularization approach to 

account for noise in the measurement system. An application of the developed framework is given 

by an aerodynamic analysis of the Great Belt East Bridge. The aerodynamic response is calculated 

numerically based on the quasi-steady model, and the underlying forces are reconstructed using 

sparse and noisy measurements. Results indicate a good agreement between the applied and the 

predicted dynamic load, and can be extended to calculate global responses and the resulting internal 

forces. Particular uses of the developed framework include validation of design models and 

assumptions, as well as prognosis of responses to assist in damage detection and structural health 

monitoring. 
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1 INTRODUCTION 

Assumptions on statistical wind properties, limitations of aerodynamic models and restrictions 

in stochastic dynamic analysis are just a few of many sources of uncertainties when modelling 

aerodynamic loads during the design phase of a long-span bridge. Furthermore, due to its extended 

lifetime and external effects such as climate change, the dynamic forces that are considered during 

design are subject to unforeseen changes. These factors motivate the creation of models to reconstruct 

dynamic loads based on measurement data. 

Several methods for force reconstruction exist in literature, which are generally based on data-

driven techniques [4][5], optimization strategies [10] and defined basis functions [2]. A review of 

several of these models is given in [8]. A novel methodology based on stochastic processes is 
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proposed in this study. The framework combines data-driven models with physics-based 

formulations, overcomes the necessity of regularization, naturally incorporates measurement noise 

properties and can integrate different data types and sets with different measurement quality. 

This study employs a specific aerodynamic model, based on the quasi-steady assumption, to 

evaluate the structural response of the Great Belt East Bridge due to an applied wind load. The 

evaluated response is contaminated with noise and further used as input to the physics-informed 

machine learning model, which in turn yields a stochastic model for the underlying aerodynamic 

force. Comparisons and evaluation of the results are provided by comparing the true and 

reconstructed signals, and the predictions are coupled with a structural finite element model to 

provide insights on structural responses and internal forces due to the aerodynamic loading. 

2 GAUSSIAN PROCESS FOR FORCE RECONSTRUCTION 

2.1 Physics-informed Gaussian process 

The response of a harmonic oscillator to an arbitrary dynamic loading 𝐹 is given by the second-

order inhomogeneous differential equation 
 

𝑚𝑢̈ + 2𝑚𝜁𝜔𝑛𝑢̇ + 𝑚𝜔𝑛
2𝑢 = 𝐹 (1) 

 

where 𝑚 is the oscillator’s mass, 𝜁  is the damping ratio to critical, 𝜔𝑛  is the oscillator’s circular 

natural frequency, and 𝑢 , 𝑢̇  and 𝑢̈  are the displacement, velocity and acceleration responses, 

respectively. These responses are generally directly measurable through sensor devices, and therefore 

the displacement response can be modelled as 
 

𝑢 = 𝑓(𝑡) +  𝜀,   (2) 
 

where 𝑡 is the time and 𝜀 = 𝒩(0, 𝜎𝑛,𝑢
2 ) the Gaussian noise in the measurement system, characterized 

by a variance 𝜎𝑛,𝑢
2 . The same principle of a stochastic process applies to the velocity and acceleration 

signals, where each of them has a particular noise variance 𝜎𝑛,𝑢̇
2  and 𝜎𝑛,𝑢̈

2 .  Assuming the deflection 

response is a stochastic zero-mean Gaussian process, a model can be created such that  
 

𝑢(𝑡) ~ 𝒢𝒫 (0, 𝑘𝑢𝑢(𝑡, 𝑡′; 𝜎𝑠 , ℓ)  + 𝜎𝑛,𝑢
2 𝛿(𝑡, 𝑡′)),   (3) 

 

where 𝛿 is the Kronecker-Delta operator and 𝑘𝑢𝑢 is a covariance kernel parametrized by a standard 

deviation amplitude 𝜎𝑠 and a length scale ℓ [7]. Because the displacement response is assumed to be 

continuous and smooth in time, 𝑘𝑢𝑢 is herein modelled by the squared exponential (SE) kernel 
 

𝑘𝑢𝑢(𝑡, 𝑡′; 𝜎𝑠, ℓ) = 𝜎𝑠
2 exp (−

1

2
(

𝑡−𝑡′

ℓ
)

2

),   (4) 

 

which reflects the assumption that similar time indexes should have similar displacement responses. 

Since velocities and accelerations are time-derivatives of the displacements and exploiting the fact 

and any linear operation to a Gaussian process result in another GP, physics-informed models can 

also be created for velocities 𝑘𝑢̇𝑢̇  and accelerations 𝑘𝑢̈𝑢̈ , as well the respective cross-covariances 

between all measurement types. The generated models are used in combination with the measurement 

data for training, as shown in Figure 1 (green block). 

 Combining the derived response kernels with the oscillator model from Eq. (1) gives rise to a 

physics-informed cross-covariance model between the dynamic load and the deflection, 
 

𝑘𝐹𝑢(𝑡, 𝑡′; 𝜎𝑠, ℓ) = 𝑚
𝑑2

𝑑𝑡2
𝑘𝑢𝑢 + 2𝑚𝜁𝜔𝑛

𝑑

𝑑𝑡
𝑘𝑢𝑢 + 𝑚𝜔𝑛

2𝑘𝑢𝑢, (5) 
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while the models for the remaining responses are generated similarly. The force covariance is 

calculated by applying Eq. (1) to the second time index of 𝑘𝐹𝑢, yielding 
 

𝑘𝐹𝐹(𝑡, 𝑡′; 𝜎𝑠, ℓ) = 𝑚
𝑑2

𝑑𝑡′2 𝑘𝐹𝑢 + 2𝜁𝜔𝑛
𝑑

𝑑𝑡′ 𝑘𝐹𝑢 + 𝜔𝑛
2𝑘𝐹𝑢. (6) 

 

which can be used for predictions, as seen in Figure 1 (blue and red blocks, respectively). 

 
Figure 1: Framework for the physics-informed Gaussian process: (green) models for measured data 

are created and jointly trained. A force model (blue) is built combining the previous models and the 

harmonic oscillator’s differential equation, which can be used for predictions (red). 

 

2.2 Optimization of model parameters 

Although Gaussian processes are generally regarded as non-parametric models, the choice of 

covariance kernel and the noise assumptions lead to free model parameters that shall be identified 

based on training data. Assuming measurements from deflections, velocities and accelerations are 

available, the parameter set to be identified is defined by 𝜽 = {𝜎𝑠 , ℓ, 𝜎𝑛,𝑢, 𝜎𝑛,𝑢̇, 𝜎𝑛,𝑢̈},  where the 

measurement noise can be disregarded if no data from a specific quantity is collected, or extended if 

multiple sets of data with different properties are available [9].  Parameter identification is carried 

out via maximum likelihood estimation, 
 

𝜽opt = argmax𝜽  log 𝑝(𝒚|𝒕, 𝜽) = argmax𝜽 (−
1

2
𝒚T𝑲−𝟏𝒚 −

1

2
log|𝑲| −

𝑁

2
log 2𝜋), (7) 

 

where 𝑁 is the number of data points, 𝒚 = [𝒖, 𝒖̇, 𝒖̈]T collects the training data and 𝑲 is a block-

covariance matrix calculated via the kernel formulations derived in Sec. 2.1,  
 

𝑲 = [

𝑘𝑢𝑢(𝒕, 𝒕′) + 𝜎𝑛,𝑢
2 𝛿(𝒕, 𝒕′) 𝑘𝑢𝑢̇(𝒕, 𝒕′) 𝑘𝑢𝑢̈(𝒕, 𝒕′)

𝑘𝑢̇𝑢(𝒕, 𝒕′) 𝑘𝑢̇𝑢̇(𝒕, 𝒕′) + 𝜎𝑛,𝑢̇
2 𝛿(𝒕, 𝒕′) 𝑘𝑢̇𝑢̈(𝒕, 𝒕′)

𝑘𝑢̈𝑢(𝒕, 𝒕′) 𝑘𝑢̈𝑢̇(𝒕, 𝒕′) 𝑘𝑢̈𝑢̈(𝒕, 𝒕′) + 𝜎𝑛,𝑢̈
2 𝛿(𝒕, 𝒕′)

], (8) 

 

for the specific measurement times 𝒕. Maximization of Eq. (7) is achieved by gradient ascent via 

quasi-Newton BFGS optimization. Although not explicitly shown, it is worth noting that the derived 

formulation does not require a regular time-step interval, providing flexibility in cases of missing 

response time-steps or imperfect sensor synchronization. 

 

2.3 Force prediction 

Once the free parameters are identified based on data, the force signal that generated the 

measured responses can be reconstructed. The joint distribution of the data collected in 𝒚 and the 

force vector 𝑭 is given by 
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𝑝(𝒚, 𝑭) = 𝒩 ([
𝟎
𝟎

] , [
𝑲 𝑲∗

𝑲∗
T 𝑲∗∗

]) (9) 

 

with 𝑲∗ = [𝑘𝐹𝑢(𝒕∗, 𝒕′), 𝑘𝐹𝑢̇(𝒕∗, 𝒕′), 𝑘𝐹𝑢̈(𝒕∗, 𝒕′)]T and 𝑲∗∗ = 𝑘𝐹𝐹(𝒕∗𝒕∗
′ ), where 𝒕∗ are the time instants 

for force prediction. Conditioning the force model on the measurement data yields  
 

𝑝(𝑭|𝒚) =  𝒩(𝝁 = 𝑲∗
T𝑲−1𝒚 , 𝚺 = 𝑲∗∗ − 𝑲∗

𝑇𝑲−1𝑲∗),   (10) 
 

which defines the prediction’s mean values 𝝁 and covariance matrix 𝚺 shown in Figure 1. 

3 FUNDAMENTAL STUDIES 

To evaluate the model’s performance in a controlled and simplified manner, a single-degree-

of-freedom (SDOF) system response subjected to a harmonic force of unit amplitude is numerically 

calculated. The oscillator is set with a mass 𝑚 = 1 kg, a damping ratio of 𝜁 = 0.05 and a circular 

natural frequency 𝜔𝑛 = 2𝜋 rad/s. The sampling rate of the signal is defined by 𝑓𝑠 = 200 Hz, and the 

forcing signal is in resonance with the oscillator. Training data in 𝒚 consist of sparse, regularly-

distributed and noise-free displacement readings, while velocity and acceleration responses are not 

provided to the model, leading effectively to only two optimizable parameters 𝜽 = {𝜎𝑠, ℓ}. The 

complete displacement response and the training points (TPs) provided to the model are shown in 

Figure 2 (left).  

   
Figure 2: Left: displacement signal and corresponding training points (TPs). Right: true harmonic 

force and the model prediction’s mean. The prediction standard deviation are not shown, and tend 

to zero as the training data contains no noise.  

After the optimal parameters are identified, predictions of the original forcing signal are made 

using Eq. (10). The true harmonic force and the probabilistic prediction results are shown in Figure 

2 (right). Under idealized conditions, a very good agreement is observed between the true and the 

predicted signal, in a mean (𝜇𝐹(𝑡)) sense. Due to the lack of noise in the training data, represented in 

the GP model by setting 𝜎𝑛,𝑢 = 0 m, the standard deviation 𝜎𝐹(𝑡) of the probabilistic force model 

tends to zero, indicating full model confidence in the predictions. 

 
 

 
 

 

 

 

 
 

 

  

Figure 3: Root mean squared errors of (right) models with different SNRs, for a fixed data set     

𝒚 = {𝒖, 𝒖̇, 𝒖̈}, and (left) models trained with different data types, for a fixed SNR = 20. 
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In contrast to the previous assumptions, measurement data is generally contaminated by noise 

originating from several possible different sources. The signal-to-noise ratio (SNR) is commonly 

employed to quantify the amount of noise in a given signal, herein defined as SNR =  𝐴signal 𝐴noise⁄ , 

where 𝐴 is the root mean square function. Moreover, measurement data from all response types is 

generally not available, as it is in many cases redundant and not cost-effective. By construction, the 

GP model can nevertheless work with missing measured data or incorporate different multi-fidelity 

sets of the same data type. To evaluate the effects of both properties, the system is again trained for 

data sets containing various SNRs and composed of different combinations of data types.  

Although the GP formulation accounts for noise in the measured data via the 𝜎𝑛 parameters, 

high-noise signals (low SNRs) can locally modify the force predictions, effectively shifting the mean 

prediction in a smoothed region around specific training points, leading ultimately to a high root mean 

squared error RMSE. The prediction performance increases rapidly, however, for increasing SNRs, 

indicating the influence of sensor quality on the regressed forces, as seen in Figure 3 (left). 

Differences between predicted and true force signals also reduce when more than one data type is 

available for training, as shown in Figure 3 (right). For cases when measurements contain noise, 

providing different data types allows the model to find a balancing point that explains the full 

measurement, represented by the covariance kernel in Eq. (8), leading to a stabilized prediction. In 

addition, Figure 3 (right) indicates that providing acceleration data for training lead to better 

performance when compared to velocity and displacement measurements. While this is the case for 

the particular SDOF oscillator considered in this comparison, results are also a function of the system 

and applied force properties, and therefore cannot be generalized. 

4 AERODYNAMIC FORCES ON THE GREAT BELT EAST BRIDGE  

The developed model for force identification is employed to reconstruct the aerodynamic 

forces applied to a numerical model of the Great Belt East Bridge in Denmark. The suspension bridge 

has a main span of 1624 m and two symmetrical side spans of 535 m each. The deck has a streamlined 

cross-section with a chord 𝐵 = 31 m and depth 𝐻 = 4 m. A sketch of the bridge elevation and the 

coordinate system for the wind fluctuations and aerodynamic forces on the cross-section level, for 

the reduced-order dynamic modelling, are shown in Figure 4, along with the first vertical and 

torsional mode shapes.  

 
 

 
Figure 4: The Great Belt East Bridge. On top, the elevation (left) and cross-section sketch with the 

coordinate system for aerodynamic forces and wind fluctuations (right). At the bottom, the first 

vertical (𝑓ℎ = 0.100 Hz, left) and torsional (𝑓𝛼 = 0.278 Hz, right) mode shapes.  

 For the aerodynamic analysis of the bridge, the wind velocity is separated into a mean 

component 𝑈  and fluctuating components 𝑢  and 𝑤  in the horizontal and vertical directions, 

respectively. The 2D section is assumed to have three degrees of freedom for horizontal 𝑝, vertical ℎ 

and rotational 𝛼 motions. The drag 𝐷, lift 𝐿 and moment 𝑀 forces acting on the deck due to motion, 

mean wind and buffeting are obtained using the quasi-steady assumption [1] by 

 

𝐷 = 𝐹𝐿 sin 𝜑𝐷 − 𝐹𝐷 cos 𝜑𝐷,   𝐿 = 𝐹𝐿 cos 𝜑𝐿 − 𝐹𝐷 sin 𝜑𝐿,   and    𝑀 =  𝐹𝑀, (11) 
 

with 𝜑𝑖 for 𝑖 = {𝐷, 𝐿, 𝑀} being the dynamic angle of attack, and 
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𝐹𝐷 =
1

2
𝜌𝑈𝑟𝐷

2 𝐵𝐶𝐷(𝛼𝑒𝐷),   𝐹𝐿 = −
1

2
𝜌𝑈𝑟𝐿

2 𝐵𝐶𝐷(𝛼𝑒𝐿),  and  𝐹𝑀 =
1

2
𝜌𝑈𝑟𝑀

2 𝐵2𝐶𝑀(𝛼𝑒𝑀) (12) 

 

where 𝜌  is the air density, 𝐶𝑖  is the static wind coefficient and 𝛼𝑒  the effective angle of attack, 

calculated by  
 

𝛼𝑒𝑖 = 𝛼𝑠 + 𝛼 + 𝜑𝑖 = 𝛼𝑠 + 𝛼 + arctan (
𝑤+ℎ̇+𝑚𝑖𝐵𝛼̇

𝑈+𝑢−𝑝̇
), (13) 

 

where 𝛼𝑠 is the angle of attack at static equilibrium. The resultant velocity 𝑈𝑟𝑖 is calculated as 
 

𝑈𝑟𝑖 = √(𝑈 + 𝑢 − 𝑝̇)2 + (𝑤 + ℎ̇ + 𝑚𝑖𝐵𝛼̇)2,  (14) 

 

where 𝑚𝑖  is the aerodynamic centre for 𝑖 = {𝐷, 𝐿, 𝑀} . The dynamic structural response was 

calculated for a 10-minute turbulent wind time history. The mean wind speed considered is 30 m/s, 

while the isotropic turbulence is defined by an intensity of 10% and generated using the von Kármán 

spectrum, with length scales of 200 m for the horizontal direction and 100 m for vertical and 

longitudinal directions, respectively. Mechanical admittance in the buffeting response was calculated 

using Sears’ model and the aerodynamic centre was defined using Den Hartog’s assumptions. The 

static wind coefficients are obtained from [3]. 

 

 
Figure 5: Top: noise-contaminated displacement, velocity and acceleration responses from the first 

vertical mode and corresponding training points (TPs). Bottom: true dynamic force and the 

prediction’s mean and 95% confidence interval. 

A total of 22 modes are considered in the aerodynamic analysis, and the modal responses are 

linearly combined to yield the global coordinate response. Herein, a white noise signal of SNR = 20 

is added to each of the modal responses, and the resulting time series is directly used to obtain the 

forcing signal. In practice, sensor measurements in global coordinates can be decomposed into modal 

components if modal information is available, using techniques such as modal decomposition or 

Kalman filtering [6]. A sparse selection of the displacement, velocity and acceleration responses is 

used for training, where the data points were selected using a regular time interval of Δ𝑡 =  1.25 s 

(cf. Figure 5, top). The resulting prediction of the modal force for the whole 10-minute analysis time, 

in the case of the first vertical mode, is shown in Figure 5, bottom. 

Similar to the SDOF results, a good agreement is observed between the true modal force and 

the GP predictions, even though in the bridge model the force signal contains multiple harmonic 
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components, governed typically by the structural modal frequencies. If a shorter time window is 

analysed (cf. Figure 6, left), however, it is evident that the predictions are a smoothened version of 

the true force, with the GP effectively acting as a low-pass filter of the original signal and capturing 

high-frequency content by its uncertainty measurement. This is also verified by the power spectral 

density 𝑆𝐹𝐹 of the force, as shown in Figure 6 (right), where a good agreement is observed until 𝑓 =
2.5 Hz, corresponding approximately to the Nyquist frequency related to the sampling rate of the data 

used for training.  

 
Figure 6: Left: detail of the probabilistic prediction in a smaller time window. Right: PSD of the 

original and regressed modal force. 

 Evaluation of the prediction quality for all 22 modes is carried out using the mean squared 

error in relation to the normalized true force. Although the modal contributions towards the global 

response are functions of the forcing and structural properties, similar RMSE values between 0.04 

and 0.10 are observed across all modes, and the predictions have similar quality levels. In practice, 

this may not always be true due to the influence of noise in the measurement system. 

 

 
Figure 7: Comparison between numerical response and probabilistic predictions. Top: deck global 

vertical response at midspan. Bottom: internal bending moment response at pylon support.  

The force predictions can further be used to evaluate global responses based on the 

measurement data, by combining the GP predictions with a finite element model of the Great Belt 

East Bridge. Hence, two different examples are now presented. In Figure 7 (top), the global vertical 

displacement response at midspan is reconstructed based on the superposition of modal displacements, 

in combination with the corresponding mode shapes. In Figure 7 (bottom), the bending moment 

values at the pylon support are shown based on the numerical analysis and on the GP predictions. 

The model uncertainty is reduced in comparison to the force predictions since the structural response 

is generally governed by lower frequencies, which are captured with higher accuracy by the Gaussian 
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process model, as observed in Figure 6 (right). Furthermore, a good agreement is observed between 

the true response and the mean predictions. 

5 SUMMARY AND CONCLUSIONS 

In summary, a novel stochastic method to reconstruct dynamic forces based on sensor 

measurement data has been presented. The model is built based on Gaussian process regression for 

machine learning, and relations between physical properties are embedded using well-established 

differential equations. This hybrid formulation allows for the use of heterogeneous and multi-fidelity 

data during training. Regularization schemes, generally a source of problems in typical optimization 

problems, are bypassed by the natural trade-off between data fitting and model complexity provided 

by the GP model, which also allows for fully analytical tractability. 

Force predictions were compared and discussed from the perspective of the assumptions taken 

for each particular example. The model limitation to represent a wide range of frequency content 

correlates with the sampling rate of training data, which may prove problematic when high-frequency 

components are expected, as the optimization for GPs scales particularly poorly for an increasing 

number of training points. Cases of missing steps or unsynchronized training data can be seamlessly 

incorporated by the derived model but were not considered in this study. Moreover, coupling the 

probabilistic force predictions with a finite element solver allows for a statistical view of global 

responses and, consequently, internal forces. The outputs of this analysis provide valuable insights 

into structural performance evaluation and allow for condition diagnostics and prognosis. 

In conclusion, the derived framework is a powerful statistical tool for dynamic force 

reconstruction and has direct applications in model validation and structural health monitoring. 

Although the results presented herein are for a specific case study, it is expected that they extend to 

different structural systems and dynamic loading properties. 
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