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Abstract 

IABSE Task Group 3.1 has mandate to define reference results for the validation of methodologies 
and programs used to study both stability and buffeting response of long-span bridges. These tools 
for the simulation of the aeroelastic behaviour are indeed fundamental in the safe design of bridges 
and they should be validated. 

The workgroup decided to setup a benchmark procedure consisting of several steps to define 
reference results for this validation. For each step, contributors use their own methodology to 
simulate the bridge behaviour using the same input data. All the results are then compared, and 
reference values are defined through a statistical analysis. The benchmark procedure is thought as 
a 3-step problem with sub-steps of increasing difficulty: Step 1 compares numerical results only, 
Step 2 is a validation against wind tunnel experiments, and Step 3 against full-scale data. 

In this paper, the contributions and the reference results of the simplest initial sub-step (1.1.a) are 
presented. It consists in the simulation of the aeroelastic response of a 2-degree of freedom 
sectional model, with analytical aerodynamic coefficients, forced by turbulent wind. Despite the 
problem simplicity, differences in some contributions are significant, confirming the necessity of 
having solid references to validate software programs.  
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1 Introduction 

1.1 Task Group 3.1: super-long span bridge 
aerodynamics  

The assessment of the dynamic response of long-
span bridges to turbulent wind is one of the major 
challenges for designers, since excessive wind-
induced vibrations may lead to comfort, fatigue 
and structural strength problems. Moreover, 
structural safety verifications must account for the 
bridge aeroelastic instabilities. 

Methodologies and software programs used for 
the assessment of the aeroelastic behaviour of long 
span bridges should be validated against 
benchmark results. In other engineering fields, 
procedures to certify software programs are 
available; as an example, we can list the following: 

a) software programs for computing the response 
of High Voltage Transmission lines to vortex 
induced vibrations and sub-span oscillations 
are validated through benchmarks between 

different programs and against field 
measurements, as presented in Refs. [1]. 

b) the European Standard defines the procedure 
to validate the software programs for 
computing train dynamics to support 
homologation, through comparison between 
analytical and experimental results, as 
proposed in Refs. [2] [3]  

c) A European Standard is available to certify the 
software programs for computing pantograph-
catenary interaction using a reference result, 
as presented in Refs. [4]. 

For bridge aeroelasticity, on the contrary, up to 
now, there are not well-established or 
standardized procedures for validation of 
numerical methodology and software programs 
adopted for stability and buffeting response 
analyses of super-long span bridges. Therefore, the 
IABSE Task Group 3.1 (extended name: “super-long 
span bridge aerodynamics”) was promoted to 
propose a validation procedure based on the state 
of the art in this field.  
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To define reference results for comparison in this 
validation, the Task Group (TG) decided to set up a 
benchmark procedure that consists of multiple 
steps with increasing level of complexity. For each 
step, TG members use their own methodology and 
codes to simulate the bridge behaviour, with the 
same input data. All the results are then compared, 
and reference values are defined with a statistical 
analysis. They are finally published for everyone 
who wants to validate their methodologies and 
numerical codes. 

Currently, TG 3.1 members are academic 
researchers, consultants and designers with great 
experience of bridge studies and design, affiliated 
to Aas-Jakobsen, ARUP, Bauhaus University, 
Bentley Systems, Bouygues Construction, COWI, 
Greisch, Norwegian University of Science and 
Technology, Parsons, Politecnico di Milano, 
Ramboll, RWDI, Seoul National University, Svend 
Ole Hansen ApS, Tonji University, University of A 
Coruna, University of Buffalo, University Southern 
Denmark, and Yokohama National University. Each 
research group has his own methodology to solve 
the bridge response to wind, either in time domain 
(TD) or in frequency domain (FD) and the 
description of their the methodologies employed in 
the current paper can be found in the proposed 
Refs. [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] 
[16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] 
[27]. 

 

1.2 TG3.1 Benchmark structure 

TG3.1 benchmark consists of 3 principal steps (Step 
1, 2, and 3) with sub-steps of increasing complexity. 
For each Step, same input data are used and shared 
among all the participants. The results, obtained 
through the different methodologies adopted by 
the TG participants, will be analyzed to define 
reference values to validate the software 
programs, as it will be explained in Section 3. 

1.2.1 Step 1 

Step 1 is a comparison of results obtained from 
different numerical algorithms developed to 
analyse the stability and the buffeting response of 
a bridge. This Step has 2 sub-steps with increasing 
level of complexity:  

• Step 1.1 that considers a deck sectional 
model; 

• Step 1.2 that analyses a full bridge model. 

In their turn, both Step 1.1 and Step 1.2 have their 
sub-steps: 

a) Step 1.1a is the simplest case. It is the topic 
of this paper and it is fully discussed in the 
next sections. This case examines the 
stability and the buffeting response of a 
deck sectional model with 2 degree-of-
freedom (DOF): vertical and torsional. The 
analytical Theodorsen functions of a flat 
plate are used to define aerodynamic 
forces as analytical functions of the 
reduced velocity. Only the vertical 
component w of wind turbulence is 
considered, with an analytical formulation 
to compute buffeting forces.  
 

b) Step 1.1c introduces some complexities 
with respect to 1.1a:  experimental 
aerodynamic coefficients, defined in a 
limited range of reduced velocities, and 3 
degree-of-freedom (vertical, torsional, and 
lateral). Moreover, both the vertical and 
the horizontal components of turbulence, 
w and u, are considered.  
 

c) Step 1.2a studies the stability and the 
buffeting response of a full bridge forced 
by a turbulent wind field, where the 
horizontal and vertical components change 
in time and space (along the bridge axis). 
The Storebælt bridge structure is 
considered, using a modal approach with 
the first 12 vibration modes. Experimental 
aerodynamic coefficients at 0-degree angle 
of attack are used to simplify the analysis.  
 

d) Step 1.2b introduces additional complexity 
with respect to 1.2a: experimental 
aerodynamic coefficients dependency 
upon the angle on attack is considered. 
 

Step 1.1c has been already completed, and the 
results will be published as Part 2 of this article. 
Step 1.2 is on going and an extended paper with its 
results will be issued in 2019. 
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1.2.2 Step 2 

Step 2 will be a comparison of predicted numerical 
results and wind tunnel experimental tests. The 
experimental tests have been already performed 
on a 2 degree-of-freedom sectional model of the 
Yavuz Sultan Selim Bridge (Third Bosphorus 
Bridge).  

The complete set of aerodynamic coefficients were 
measured on this sectional model: drag, lift and 
moment static coefficients, flutter derivatives and 
admittance functions as functions of the mean 
angle of attack.  

Aeroelastic tests were performed on the model 
suspended on springs. Frequencies, damping ratios 
and modes of vibration were measured at different 
mean wind speeds to assess aeroelastic stability.  

Buffeting tests were performed using an active 
turbulence generator available at the wind tunnel 
of Politecnico di Milano (POLIMI), see Refs. [26].  

The results of the experimental campaign have 
already been distributed to all TG members and 
results collection is on going. 

1.2.3 Step 3 

Step 3 will be a comparison of numerical results 
against full scale measurements on a real bridge, if 
available in the future. Monitoring data will be used 
for a benchmark case at full scale in which all the 
input and output data of the bridge will be available 
for all the participants. 

1.2.4 Benchmark input data 

In the Supplemental Material of each TG paper 
dealing with a specific step, the corresponding 
input data are provided. As an alternative, the 
same data can be downloaded from the IABSE 
website.   

Everyone can check their numerical codes using 
these data.  

 

 

2 Benchmark: Step 1.1a 

As introduced in the previous section, Step 1.1a 
studies a 2-DOFs (vertical and torsional) deck 

sectional model with analytical aerodynamic 
coefficients.  

Input data were provided to all TG contributors, 
and they are described in Section 2.1, while the 
output results are compared in Section 3 and they 
are described in Section 2.2.  

2.1 Input for Step 1.1a analysis 

The input data for the simulation of the deck 
response are the following: 

• structural parameters of the deck sectional 
model 

• turbulent wind characteristics 

• aerodynamic coefficients 

2.1.1 Structural parameters 

Structural input data of the sectional model are 
reported in Table 1. The real full-scale values (mass 
per unit length, structural natural frequencies, 
damping ratio and deck chord) of the Storebælt 
bridge are used. Only the parameters of first 
vertical and torsional modes of the full bridge are 
considered for the sectional model. 

Table 1. Sectional model structural data 

Quantity Description Value 

mL [kg/m] 
Mass per unit 
length 

22740 

JL [kgm2/m] 
Moment of Inertia 
per unit length 

2.47×106 

B [m] Deck chord 31 

fz [Hz] 
Vertical structural 
frequency 

0.10 

f [Hz] 
Torsional structural 
frequency 

0.278 

 [-] 
Damping ratio (for 
both modes) 

0.003 

2.1.2 Turbulent wind characteristics 

The mean wind speed 𝑈 and only the vertical 
component of turbulent wind are considered, since 
only the vertical and torsional motion are 
investigated. Five mean wind speed scenarios are 
considered to compare results with an increasing 
level of aerodynamic coupling up to a wind speed 
close to flutter instability. The characteristics of the 
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simulated wind are reported in Table 2. Ten 600-
second long time histories of the vertical wind 
component were generated through the Von 
Karman spectrum reported in Table 2, to allow the 
use of time-domain methods. A harmonic 
superposition method is used for the generation of 
the time histories (see Refs. [28] [29]). The time 
histories of 𝑤(𝑡) are available in the Supplemental 
Material. 

The method used for the wind generation was 
selected for convenience: the investigation of the 
wind field generation problem is not a task of the 
benchmark and it is beyond the scope of this study. 

 

Table 2. Incoming wind characteristics 

Wind 
speeds  

U = 15, 30, 45, 60, 75 m/s 

Air density  𝜌 = 1.22kg/m3 

Turbulence 
intensity 

𝐼𝑤 =
𝜎𝑤

𝑈
= 0.05 

Integral 
length scale 

xLw = 20 m 

Von Karman 

power 

spectrum of 

w 

𝑓 ⋅ 𝑆𝑤(𝑓)

𝜎𝑤
2

 

=  

4 (
𝑓 𝑥𝐿𝑤

𝑈 ) (1 + 755.2 (
𝑓 𝑥𝐿𝑤

𝑈 )
2

)

[1 + 283.2 (
𝑓 𝑥𝐿𝑤

𝑈
)

2

]
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2.1.3 Aerodynamic forces 

The standard approach to write the aerodynamic 
forces is based on a linearized model of the fluid-
structure interaction around a steady configuration 
of the bridge, which depends on the mean wind 
speed.  
 
The aerodynamic forces (𝐹𝑎𝑒𝑟𝑜) acting on the deck 
can be modelled as the sum of three different 
components, namely: 

• 𝐹𝑆𝑇 ,the stationary aerodynamic forces 

• 𝐹𝑠𝑒, the self-excited (or motion-induced) 
forces 

• 𝐹𝑏𝑢𝑓𝑓, the buffeting forces. 

The stationary aerodynamic forces 𝐹𝑆𝑇 depend on 
the mean wind speed only, the self-excited forces 
𝐹𝑠𝑒 depend on bridge motion, and the buffeting 
forces 𝐹𝑏𝑢𝑓𝑓 depend on the incoming wind 

turbulence. 

According to the sign conventions reported in 
Figure 1, the steady aerodynamic drag, lift and 
moment acting on the deck section of unitary 
length are defined through steady coefficients as  
functions of the angle of attack 𝛼: 

𝐹𝑆𝑇 =
1

2
𝜌𝑈2𝐵 [

𝐶𝐷(𝛼)
𝐶𝐿(𝛼)

𝐵 𝐶𝑀(𝛼)
]    (1) 

where 𝐵 is the deck chord, 𝑈 the mean wind 
velocity, and 𝜌 the air density. 𝐶𝐷 , 𝐶𝐿, 𝐶𝑀 are 
respectively the drag, lift and moment static 
coefficients, usually measured through wind tunnel 
tests. 

For Step 1.1a, the aerodynamics of a flat plat is 
considered, around zero angle of attack. Therefore, 
𝐶𝐷 = 0, while the static lift and moment 
aerodynamic coefficients are defined as: 

[
𝐶𝐿

𝐶𝑀
] =   [

𝐾𝐿

𝐾𝑀
] 𝛼 =   [

0
0

]    (2) 

where 𝐾𝐿 = 2𝜋 and 𝐾𝑀 = 𝜋/2 are the first 
derivative of lift and moment static coefficients 
with respect to the angle of attack. 𝛼 = 0 since it is 
equal to the static rotation of the deck 𝜃𝑠𝑡 = 0. 
(see Figure 1).  

Consequently, the main aim of the benchmark is to 
compare the dynamic response of the bridge due 
to the self-excited 𝐹𝑠𝑒 and buffeting forces 𝐹𝑏𝑢𝑓𝑓 

around the steady configuration of the bridge, in 
this case always equal to zero (𝑧𝑠𝑡 = 0, 𝜃𝑠𝑡 = 0).  

 

Figure 1. Sign conventions 
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Self-excited forces 𝐹𝑠𝑒 per unit length are defined 
through the flutter derivatives coefficients using a 
linearized approach around the steady position of 
the bridge. Typically, flutter derivatives coefficients 
are measured experimentally on rigid sectional 
models in wind tunnels for a discrete number of 
reduced velocities requiring an interpolation 
and/or extrapolation to simulate conditions where 
experimental data are not available, see Refs [30]. 

For Step 1.1a the flat plate flutter derivatives values 
are defined analytically from the Theodorsen 
function. This choice is due to the will to start with 
a completely defined problem where the 
dependence of flutter derivatives on reduced 
velocity is analytically defined. 

The POLIMI formulation for flutter derivatives ( see 
Refs [25]) is used in this paper for convenience, 
since this notation is closer to the Theodorsen 
functions. The coefficients in the classical Scanlan 
formulae are available in the Supplemental 
Material.  Considering a vertical and a torsional 
harmonic motion around the steady position of the 
bridge at 0 degree, the self-excited forces per unit 
length 𝐹𝑠𝑒 acting on the bridge deck are expressed 
through eight flutter derivatives as: 

𝐿𝑠𝑒 =
1

2
𝜌𝑈2𝐵 (

−ℎ1
∗ �̇�

𝑈
− ℎ2

∗ 𝐵�̇�

𝑈
+ ℎ3

∗𝜃 + ⋯

2𝜋3

𝑉∗2 ℎ4
∗ 𝑧

𝐵

) (3) 

𝑀𝑠𝑒 =
1

2
𝜌𝑈2𝐵2 (

−𝑎1
∗  

�̇�

𝑈
− 𝑎2

∗ 𝐵�̇�

𝑈
+ 𝑎3

∗𝜃 + ⋯

2𝜋3

𝑉∗2 𝑎4
∗ 𝑧

𝐵

) (4) 

where ℎ𝑖
∗ are the flutter derivatives for lift force 

𝐿𝑠𝑒 and 𝑎𝑖
∗ are the flutter derivatives for the 

moment 𝑀𝑠𝑒; V* = U/(fB) is the reduced velocity, 
being f the frequency and 𝐵 the deck chord; 𝑧 and 
𝜃 are respectively the vertical (positive upward) 
and the torsional (positive nose-up) displacements 
of the sectional bridge around the static 
configuration, see Figure 1.  

The flutter derivatives defined analytically for a flat 
plate are (see Refs. [31]): 

ℎ1
∗ = 2𝜋𝐹(𝑓∗)

ℎ2
∗ = −2𝜋 (

1

4
+

𝐹(𝑓∗)

4
+

1

2𝜋
𝑉∗𝐺(𝑓∗))

ℎ3
∗ = 2𝜋 (𝐹(𝑓∗) −

𝜋

2𝑉∗ 𝐺(𝑓∗))

ℎ4
∗ = (1 +

2

𝜋
𝑉∗𝐺(𝑓∗))

 (5) 

 

𝑎1
∗ =

𝜋

2
𝐹(𝑓∗)

𝑎2
∗ =

𝜋

2
(

1

4
−

𝐹(𝑓∗)

4
−

1

2𝜋
𝑉∗𝐺(𝑓∗))

𝑎3
∗ =

𝜋

2
(𝐹(𝑓∗) −

𝜋

2𝑉∗ 𝐺(𝑓∗))

𝑎4
∗ =

𝑉∗

2𝜋
𝐺(𝑓∗)

 (6) 

Where 𝐹(𝑓∗) and 𝐺(𝑓∗) are the real and imaginary 
parts of the circulatory Theodorsen function, 
defined through the Bessel functions 𝐽𝑖 and 𝑌𝑖  of 
the first and second kind (𝑖 = 0, 1) available in 
standard computational codes: 

𝐹(𝑓∗) =
𝐽1(𝐽1+𝑌0)+𝑌1(𝑌1−𝐽0)

(𝐽1+𝑌0)2+(𝑌1−𝐽0)2   (7) 

𝐺(𝑓∗) = −
𝐽1𝐽0+𝑌1𝑌0

(𝐽1+𝑌0)2+(𝑌1−𝐽0)2  (8) 

Typically, flutter derivatives coefficients are 
function not only of the reduced velocity V*, but 
also of the mean angle of attack, around which the 
harmonic motion occurs. For Step 1.1a, only zero 
angle of attack is considered, therefore no 
contribution due to the aeroelastic drag 𝐷𝑠𝑒 is 
present and the flutter derivatives of the horizontal 
motion 𝑦 are neglected. 

 

The buffeting forces 𝐹𝑏𝑢𝑓𝑓 per unit length due to 

incoming turbulent wind 𝑤 are defined in 
frequency domain through the admittance 
functions  

{
𝐿𝑏𝑢𝑓𝑓

𝑀𝑏𝑢𝑓𝑓
} =  

1

2
𝜌𝑈𝐵 [

𝜒∗
𝐿𝑤

𝐵𝜒∗
𝑀𝑤

] {𝑊𝑤(𝑓)} (9) 

where 𝑊𝑤(𝑓) is the Fourier transform 𝑤(𝑡), 
positive upwards; 𝜒∗ are called admittance 
functions and they depend upon the reduced 
velocity V* and the mean angle of attack. 

The along wind component (horizontal 
component) u is not considered for buffeting 
forces.  
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Typically, the admittance functions 𝜒∗ are 
measured as a function of the reduced velocity and 
the mean angle of attack through wind tunnel test 
on sectional models, in a similar way of what is 
done for the flutter derivatives coefficients.  

In this case, the 𝜒∗(𝑉∗) are defined using the quasi-
steady values weighted by a function 𝐴(𝑉∗) as: 

𝜒∗
𝐿𝑤 = (𝐾𝐿 + 𝐶𝐷)𝐴(𝑉∗)  (10) 

𝜒∗
𝑀𝑤 = 𝐾𝑀𝐴(𝑉∗)   (11) 

𝐴(𝑉∗) is a real weighing function in reduced 
velocity. In Step 1.1a, the analytical Davenport 
formula is used: 

𝐴(𝑉∗) =
2

(7/𝑉∗)2  (7/𝑉∗ − 1 + 𝑒−7/𝑉∗
) (12) 

This choice is done again to have a function defined 
analytically over the complete range of V*. 

2.2 Required output for Step1.1a 

The following results were provided by the TG 
members: 

1. Aeroelastic stability in smooth flow:  
a. Critical flutter speed of the bridge; 
b. frequency and damping ratio of the 

two vibration modes as functions of 
mean wind speed. 

2. Buffeting response in turbulent flow: 
a. standard deviation of displacements 𝑧 

and 𝜃  as function of mean wind 
speed; 

b. comparison of power spectra 
densities (PSD) of 𝑧 and 𝜃. 

These results are presented and analyzed in the 
following Section, with the aim to select the most 
meaningful quantities for validating numerical 
models and corresponding reference values. 

3 Results of Step 1.1a 

3.1 Aerodynamic stability in smooth flow 

Figure 2 shows a plot of the critical flutter speeds 
computed by the different methods and software 
programs provided by TG members. Each 
contribution is reported anonymously by a 
progressive number. Fourteen contributions have 

been collected and analysed to define the 
reference values and a spread band around them. 

As expected, all the results are confined in a very 
narrow range of values (1.5 m/s) since the problem 
is simple, and input data are defined analytically 
and shared.  

Nevertheless, some contributions seem to be more 
different from the others and will be considered 
outliers. A specific procedure is applied to 
eliminate them and to use the remaining set of 
results to define the reference values. 

TG 3.1 decided to apply the following strategy. If 
we considered all the contributions, the reference 
value would be defined as the average value of all 
the results 𝜇∗, since there is no motivation to prefer 
one contribution instead of another one. Following 
this approach, the average value and the spread 
band plus/minus one standard deviation 𝜎∗ are 
plotted as red lines (red dash-dot line and red 
dashed-line, respectively), on the results in Figure 
2. 

Results within this spread band are considered 
reliable, and outliers are eliminated. As an 
example, in Figure 2 Contr. 2 and 11 fall out of the 
spread band, and their effect will be eliminated. 

A new reference mean   and a new standard 

deviation   are computed excluding the outlier 
data and taken as reference: results within 𝜇 ±
𝜎 are considered valid. 

Reference values are shown in Figure 2, with a 
dashed black line for 𝜇 and a dotted black line for 
𝜇 ± 𝜎. The reference flutter speed for Step 1.1a is 
therefore defined as 𝜇 = 77.45 m/s and 𝜎 = 0.092 
m/s, according to this methodology. The two 
contributions (Contrib. 12 and 13), falling out of the 
black new spread band, are considered not 
validated. 

The comparison among the natural frequency and 
the damping ratio of the unstable torsional mode 
of the bridge deck as functions of the mean wind 
speed are reported in Figure 3 and Figure 4 
respectively. 

Looking at the frequency trend (Figure 3), a good 
agreement among results is present. Only at wind 
speed values close to flutter speed, some 
contributions show discrepancies. Contribution 10 
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is far away from the others at flutter speed in 
Figure 3, even if it is within the black spread band 
in Figure 2, and therefore it predicts the flutter 
critical wind speed in a proper way. On the 
contrary, looking at Contribution 12, that is out of 
the black spread band in flutter speed, it is also out 
from the frequency trend at the flutter speed. 

If we look to the damping ratio trend (Figure 4), 
Contribution 14 is clearly different from the others 
in all the range of wind speed apart from the region 
close to the critical flutter speed, when damping 
ratio crosses the x-axis becoming negative. This 
means that this method is able to predict the flutter 
speed close to the reference (see Contribution 14 
in Figure 2) but with a wrong aerodynamic coupling 
in most of the wind speed range. 

Excluding Contr.14, most of the discrepancies 
among the remaining contributions occur after 45 
m/s close to the peak of the damping trend of the 
unstable mode. This shows how different 
numerical models simulate aeroelastic effects in a 
different way, also for this very simple and basic 
case. 

In Figure 4 Contribution 10 is different from the 
others and very close to Contribution 12, already 
out of the black spread band in Figure 2, and 
therefore not valid. Contribution 7 shows larger 
damping than the others in the peak of the 
damping trend, despite most of the contributions 
are confined in a very narrow range of values. 

These evidences highlight that considering only 
flutter speed, it is not sufficient to validate 
numerical codes, and also the damping ratio trends 
versus the mean wind speed have to be compared 
with reference data. 

 

Figure 2. Flutter critical wind speed results from 
different programs of the TG. Red lines: statistical 
values using all data; Black lines: statistical values 

excluding outlier data 

Since the eigenvalues/eigenvectors analysis is a 
numerical iterative routine, there is no analytical 
method for calculating the trends of frequency and 
damping ratio. Reference values can only be 
defined through a statistical analysis of the results.  

As done before with the flutter speed, a similar 
procedure is applied to eliminate outliers in 
frequency and damping trends. The reference 
average values are reported in Figure 3-Figure 4, as 
black crosses. Only the reference 𝜇 is reported in 
the figure as black markers, while the ratio 
between 𝜎 and 𝜇 is listed in Table 3 and in Table 4 
in Section 4. In these Tables the vertical frequency 
and damping ratio of the vertical mode are also 
considered.  

The largest 𝜎/𝜇 value is close to the flutter critical 
wind speed, mainly on the vertical mode, when 
aeroelastic effects become stronger. In any case, 
excluding the outliers it is evident that majority of 
the results are quite similar before 45 m/s, where 
the aeroelasticity effects are not so large. 
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Figure 3. Frequency of the unstable mode as 
function of mean wind speed 

 

Figure 4. Damping ratio of the unstable mode as 
function of mean wind speed 

TG members emphasize that the flutter speed is 
not enough to validate numerical codes, and this 
information must be joined with eigenvalues 
analysis in order to check the aerodynamic 
coupling as a function of the mean wind speed. 

3.2 Buffeting response in turbulent flow 

Comparisons among the root mean square (RMS) 
values of the vertical (𝑧) and torsional 
displacement (𝜃) versus the wind mean speed are 
presented respectively in Figure 5 and Figure 6. 
Buffeting response is computed by the TG 3.1 
members using time domain (TD) (11 contributions 
collected) and frequency domain (FD) approaches 
(10 contributions collected). Torsional values are 
expressed as equivalent displacement of the deck 

leading edge according to: 𝑧𝑒𝑞 =
𝐵

2
𝜃. TD results are 

the average of the ten RMS values of the 
simulations performed using the provided ten time 
histories of wind speed. 

In Figure 5 and Figure 6 TD and FD results are 
presented together, but for a better understanding 
of the plots, frequency domain values are shifted 
by +1m/s on the x-axis to prevent overlapping. 

Figure 5 and Figure 6 report also the statistical 
analysis  of the results excluding outlier data, 
already described in the previous Section 3.1. The 
average value 𝜇 is plotted with a solid black line, 
while the curves 𝜇 ± 𝜎 are plotted with dashed 
black lines. In Section 4, Table 5 displays the 
reference mean 𝜇 and the standard deviation ratio 
𝜎/𝜇 computed excluding the outlier data at the five 
tested velocities. 

Figure 7 and Figure 8 report the power spectral 
density (PSD) computed both in frequency and 
time domain of vertical (𝑧) and torsional equivalent 
displacement (𝑧𝑒𝑞) for a wind speed of 60 m/s. Only 

ten contributions in total are available, five in 
frequency domain and five in time domain. In both 
the vertical and the equivalent torsional 
displacement three contributions are very far from 
the others. RMS values (𝑅𝑀𝑆𝑧 and 𝑅𝑀𝑆𝑧𝑒𝑞) 

computed by integration of the PSDs are reported 
in the legend, to be compared with Figure 5 and 
Figure 6. 

Considering that in Step 1.1a input data are 
analytically defined (flat plate aerodynamics from 
the Theodorsen functions), the different 
approaches should lead to the same results at least 
in frequency domain. In this case, instead of 
defining the statistical reference curve as the 
average of the collected results, an analytical 
reference curve is directly computed as reported in 
Appendix together with a numerical example of 
PSD computation in FD, at 45 m/s. 

The analytical reference power spectra are also 
used to compute analytical reference RMS to be 
compared with the statistical average of the 
available results computed by the TG participants. 
The analytical RMS computed integrating the 
power spectra are plotted in Figure 5 and in Figure 
6 as gray bars. 

The analytical reference values above defined are 
very close to the statistical ones, confirming that 
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the procedure used in this paper to define the 
reference values, when analytical solutions are not 
available, is reliable thanks to the large number and 
quality of most of the contributions. 

 

Figure 5. RMS of vertical displacement versus 
mean wind speed. Black lines: statistical values 

excluding outlier data 

 

Figure 6. RMS of equivalent torsional displacement 
versus mean wind speed. Black lines: statistical 

values excluding outlier data 

In Figure 5 and Figure 6 it is clearly visible how data 
spread increases by increasing wind speed, both for 
FD and TD approaches, neglecting Contribution 7 
(TD), that is an outlier. This effect could be due to 
the growing aeroelastic coupling between modes 
at large wind speed. TD and FD approaches show 
similar values in the torsional equivalent 
displacement, if we do not consider contributions 
FD 2, FD 10 and TD 7. This is not the same in the 
vertical displacement. Considering 60 m/s and 75 

m/s, FD approaches show a larger spread 
compared to TD approaches and they have the 
lowest values. Even excluding the outliers from the 
statistics, standard deviation on the vertical 
displacement reaches 10% at 75 m/s and 7% on the 
torsional displacement.  

Comparing Figure 5 and Figure 7, it is visible that 
Contribution FD 10, completely different from the 
other vertical RMS results, has also a complete 
different shape in the PSD of the vertical 
displacement, describing only one peak at 0.1 Hz. 
This evidence highlights how RMS results alone are 
not sufficient to validate numerical codes. Also the 
PSD trend versus the frequency has to be 
compared with reference data, because similar 
RMS values may have a complete different trends 
in the PSD. Contribution FD 10, for example, does 
not consider the aerodynamic coupling in a proper 
way at 60 m/s and probably in most range of wind 
speeds. Nevertheless, this is visible only matching 
the PSD curve with the RMS value. We can not say 
something similar about Contribution FD 2, since 
we do not have the PDS results, but probably it 
describes a wrong aerodynamic coupling near the 
flutter speed at 75 m/s. 

TG members emphasize that there is a big scatter 
in the results increasing the wind speed and it is 
already large at a typical design wind speed (e.g. 45 
m/s). A smaller spread band around the average is 
desirable. 

 

Figure 7. PSD of vertical displacement, 60 m/s 
wind mean speed 
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Figure 8. PSD of equivalent torsional displacement, 
60 m/s wind mean speed 

4 Step 1.1a: reference values  

This Section summarizes the reference values 
presented in the previous sections. 

In Table 3, reference values of the natural 
frequencies of the system as function of the mean 
wind speed are shown, while in Table 4 the 
reference values of the damping ratios are shown. 
Results of the vertical mode (𝑧) and of the torsional 
mode (𝜃) are reported at the five tested velocities 
as reference mean 𝜇 and ratio between the 
standard deviation 𝜎and 𝜇. 

Reference (RMS) values of the buffeting response 
for the vertical (𝑧) and the equivalent torsional 
(𝑧𝑒𝑞)displacements versus the wind mean speed 

for Step 1.1a are reported in Table 5. RMS values 
here reported are defined by the statistical average 

𝜇 and by normalized standard deviation 
𝜎

𝜇
 of the 

different contributions both in TD and FD. 

Table 6 and 7 report the reference power spectra 
𝑆𝑧 and 𝑆𝜃 defined in the previous Section 3.2, for 
the validation of numerical codes. Five frequencies 
are selected, and all the five wind velocities are 
considered.  

Table 3. Step 1.1a vertical and torsional 
frequencies: mean and standard deviation 

 
 15 

m/s 
30 

m/s 
45 

m/s 
60 

m/s 
75 

m/s 

fz 

[Hz] 
𝜇 0.0987 0.0999 0.1014 0.1027 0.0829 

𝜎

𝜇
 5% 0% 0% 1% 26% 

f  

[Hz] 

𝜇 0.2759 0.2691 0.2561 0.2340 0.1994 

𝜎

𝜇
 0% 0% 0% 0% 0% 

 

Table 4. Step 1.1a vertical and torsional damping 
ratios: mean and standard deviation 

 
 15 

m/s 
30 

m/s 
45 

m/s 
60 

m/s 
75 

m/s 

𝜉
𝑧
  

[-] 

𝜇 0.0399 0.0921 0.1689 0.3034 0.5349 

𝜎

𝜇
 1% 1% 1% 3% 17% 

𝜉
𝜃
 

[-] 

𝜇 0.0096 0.0189 0.0309 0.0418 0.0148 

𝜎

𝜇
 3% 2% 2% 6% 12% 

 

Table 5. Step 1.1a root mean square (RMS) of the 
vertical (𝑧) and torsional displacement (𝑧𝑒𝑞): mean 

and standard deviation 

  15 m/s 30 m/s 45 m/s 60 m/s 75 m/s 

RMS z 

𝜇 0.2603 0.778 1.3404 2.1601 4.4848 

𝜎

𝜇
 9% 6% 8% 5% 10% 

RMS 

𝑧𝑒𝑞   

𝜇 0.0419 0.2027 0.4792 0.9306 2.8414 

𝜎

𝜇
 25% 16% 12% 12% 7% 

Table 6. Step 1.1a PSD of the vertical motion 
(reference values) 

f 
[Hz] 

15 m/s 30 m/s 45 m/s 60 m/s 75 m/s 

0.001 0.12 1.19 5.60 23.86 147.27 

0.010 0.12 1.15 5.40 22.46 124.42 

0.100 4.09 20.58 34.35 44.54 53.18 

0.278 0.00 0.00 0.02 0.03 0.05 

0.300 0.00 0.00 0.01 0.02 0.03 
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Table 7. Step 1.1a PSD of the equivalent torsional 
motion (reference values) 

f 
[Hz] 

15 m/s 30 m/s 45 m/s 60 m/s 75 m/s 

0.001 0.00 0.02 0.11 0.49 3.02 

0.100 0.00 0.00 0.00 0.00 0.00 

0.234 0.00 0.06 1.11 23.77 6.17 

0.278 0.07 0.42 0.71 0.83 0.84 

0.300 0.00 0.03 0.15 0.31 0.43 

 

5 Conclusions 

IABSE TG 3.1 concluded successfully the first part of 
its working plan, and results are presented in this 
paper. TG 3.1 group has a large and qualified 
participation and results represent the synthesis of 
many contributions. This aspect is very important, 
since one of the TG 3.1 goals is the definition of 
reference data for validation of numerical codes 
and usually these reference data cannot be 
obtained through closed-form analytical 
approaches due to the complexity of the modelling. 

Reference data were therefore defined according 
to a statistical analysis of the results provided by TG 
3.1 participants, considering the average of the 
available data, preliminarily depurated by outliers, 
and a confidence band defined according to the 
spread of the results. 

Just for the buffeting response computation in Step 
1.1a, where aerodynamic coefficients are 
analytically defined over the whole range of 
reduced velocity, as well as the incoming wind PSD, 
it is possible to analytically define the reference 
data. These analytical results are provided in the 
paper and compared to the statistical analysis of 
the results obtained by TG 3.1 participants, using 
different methods. The comparison highlights how 
the statistical post-processing of a wide and high-
quality set of results allows for the definition of 
reliable reference data, supporting the adoption of 
this procedure in all the other benchmark steps. 

To enhance the numerical codes validation, 
numerical results will be also compared against 
experimental results in Step 2 that is already in 
progress and whose results will be part of a future 
publication. Indeed, TG3.1 strategy to move with 
an increasing level of difficulty on the definition of 
numerical code validation turned out to be a 
correct procedure. In fact, even though Step 1.1a 
represents an oversimplified problem that 
considers only a sectional model with 2 DOFs and 
an analytically defined aerodynamics, results 
showed noticeable differences. 

Concerning critical flutter velocities, the 
comparison showed a very limited spread of the 
results, once neglecting the outliers, but this 
parameter turned out to be not sufficient to 
validate the numerical methodology. Similar flutter 
speed values are obtained with completely 
different trends of aerodynamic damping vs wind 
speed, i.e. simulating a different aeroelastic 
behaviors. 

The trend of the eigenvalues (frequency and 
damping) as functions of wind speed needs also to 
be analyzed together with the flutter wind speed 
for a correct evaluation of the numerical models. 

A similar conclusion is also valid for RMS values in 
buffeting response, that can be obtained with very 
different PSD trends versus frequency. Again, in 
this case, the synthetic RMS value does not fully 
represent the quality of the aeroelastic modelling, 
but also PSD values should be compared to 
reference values. 

Concerning the buffeting response computed in 
Step 1.1a with frequency domain approaches, it is 
surprising to find such a dispersion of results since 
the considered problem is intentionally 
oversimplified to limit the error source basically 
only to the numerical implementation of the 
methodologies. 

Different is the case of time-domain approaches, 
where specific modelling of the aerodynamic 
forces, passing from frequency domain to time 
domain, is required and different methodologies 
are developed by the participants, justifying a 
larger dispersion as effectively shown in the results. 

A following paper will show the already collected 
results of Step 1.1c where an additional level of 
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complexity is introduced by moving to real 
experimental aerodynamic coefficients and adding 
the lateral degree of freedom and the horizontal 
turbulent wind component. 

6 Appendix 

At a given wind speed 𝑈 the equation of motion of 
the system is: 

(−ω2[𝑀𝑠 + 𝑀𝑠𝑒(𝑉∗)] + 𝑖ω[𝑅𝑠 + 𝑅𝑠𝑒(𝑉∗)] +
[𝐾𝑠 + 𝐾𝑠𝑒(𝑉∗)])𝑋 = 𝐹𝑏𝑢𝑓𝑓(𝑓)  (13) 

where: 

• 𝑋 = {
𝑍
Θ 

} is the vector of free coordinates 

• 𝑀𝑠, 𝑅𝑠, 𝐾𝑠 are the structural mass, 

damping, and stiffness matrices 

• 𝑀𝑠𝑒 , 𝑅𝑠𝑒 , 𝐾𝑠𝑒 are the self-excited mass, 

damping, and stiffness matrices, written 

through flutter derivatives at a given 

reduced velocity 𝑉∗ 

• 𝐹𝑏𝑢𝑓𝑓(𝑓) are the buffeting forces written 

through admittance functions at a given 

reduced velocity 𝑉∗ 

• 𝜔 = 2𝜋𝑓 is the circular frequency; 

The buffeting forces in frequency domain are 
defined through the Davenport function and the 
wind spectrum. Both are function of reduced 
velocity V*, so at given wind speed 𝑈, they are 
function of the frequency 𝑓. 

The power spectrum 𝑆𝑤(𝑓) is the PSD of the 
vertical component 𝑤 of the wind velocity, defined 
through the Von Karman spectrum reported in 
Table 2. The Fourier transform of the vertical 
turbulent component 𝑤(𝑡) of the wind is 𝑊𝑤(𝑓). 
At a given wind speed 𝑈, the buffeting forces are 
defined in frequency domain as: 

𝐹𝑏𝑢𝑓𝑓(𝑓) =
1

2
𝜌𝑈𝐵 [

𝜒𝐿(𝑉∗)

𝐵 𝜒𝑀(𝑉∗)
] 𝑊𝑤(𝑓)  (14) 

where: 

• 𝜒𝐿(𝑉∗) = 2𝜋 𝐴(𝑉∗), and 𝐴(𝑉∗) is 

Davenport admittance function 

• 𝜒𝑀(𝑉∗) =
𝜋

2
 𝐴(𝑉∗) 

For simplicity, buffeting forces in (16) can be 
written through a matrix 𝜒A(V∗) as: 

𝐹𝑏𝑢𝑓𝑓(𝑓) = 𝜒A(V∗) 𝑊𝑤(𝑓) (15) 

Considering the above buffeting forces as an input, 
the output of the system in frequency domain is: 

𝑋(𝑓) = 𝐻(𝑉∗)−1 𝐹𝑏𝑢𝑓𝑓(𝑓) =

 𝐻(𝑉∗)−1𝜒A(V∗) 𝑊𝑤(𝑓)  (16) 

where: 

• 𝐻(𝑉∗) = (−ω2[𝑀𝑠 + 𝑀𝑠𝑒(𝑉∗)] +
𝑖ω[𝑅𝑠 + 𝑅𝑠𝑒(𝑉∗)] + [𝐾𝑠 + 𝐾𝑠𝑒(𝑉∗)]) is 

the impedance matrix of the system at a 

given frequency 𝑓 and reduced velocity 𝑉∗ 

Taking the complex conjugate transpose of the 
complex output vector 𝑋: 

𝑋(𝑓)̅̅ ̅̅ ̅̅ = 𝑊𝑤(𝑓)̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝜒A(V∗) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝐻(𝑉∗)−1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  (17) 

The cross-spectrum matrix of the output 𝑋 will be: 

𝑋�̅� =

𝐻(𝑉∗)−1𝜒A(V∗)𝑊𝑤(𝑓)𝑊𝑤(𝑓)̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝜒A(V∗)̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝐻(𝑉∗)−1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
     (18) 

The cross-power spectrum matrix will be the 
expected value 𝐸(𝑋�̅�) dividing by 2𝑑𝑓, where 𝑑𝑓 is 

the frequency resolution: 

𝑆𝑋(𝑓) = 𝐻(𝑉∗)−1𝜒A(V∗)𝑆𝑤(𝑓) 𝜒A(V∗)̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝐻(𝑉∗)−1 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

     (19) 

where 𝑆𝑋(𝑓) is the cross-power spectrum matrix of 
the output, whose diagonal terms are the PSD of 
the vertical motion 𝑆𝑧 and of the torsional motion 
𝑆𝜃. 

A numerical example of the PSD computation is 

reported in order to help the validation procedure. 

Selecting a wind velocity 𝑈 of 45 m/s and a 
frequency 𝑓 of 0.278 Hz (the structural torsional 
frequency), the reduced velocity 𝑉∗is equal to 5.22 
and the PSD of the wind 𝑆𝑤(𝑓 = 0.278) is 5.26 
(

𝑚

𝑠
) 2

𝐻𝑧
. 

The admittance matrix 𝜒A(V∗ = 5.22) is: 

𝜒A(V∗ = 5.22 ) = [
0.3584
2.7773

] 104 

and the impedance matrix of the system at the 
given reduced velocity 𝑉∗is: 

𝐻(V∗ = 5.22)

=  [
−0.0619 +  0.0056𝑖  −0.1492 −  0.0811𝑖

 0.0100 +  0.0419𝑖 −1.1559 +  0.5382𝑖
] 106  
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The cross-power spectrum matrix of the output 
𝑆𝑋(𝑓 = 0.278), through Eq. (21) is: 

𝑆𝑋(𝑓 = 0.278)

= [
0.0167  0.0 −  0.007𝑖

 0.0 +  0.007𝑖 0.0029
] 

where the Power Spectrum Density of the vertical 

displacement is 𝑆𝑧(𝑓 = 0.278) =  0.0167 
𝑚2

𝐻𝑧
 and 

the Power Spectrum Density of the torsional 

displacement is 𝑆𝜃(𝑓 = 0.278) =  0.0029 
𝑟𝑎𝑑2

𝐻𝑧
. 

The torsional values expressed in equivalent 
displacement of the deck leading edge according 

to: Szeq
(𝑓)  = (

B

2
)

2
𝑆𝜃(𝑓), is equal to 0.7062  

𝑚2

𝐻𝑧
. 

By repeating the example above for all the desired 
frequencies 𝑓 and wind speeds 𝑉, it is possible to 
obtain the PSD reference curves in frequency 
domain, as shown in Figure 7 and in Figure 8 for a 
wind speed of 60 m/s. 
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